

Cet ouvrage a béné�cié des relectures attentives des zCorrecteurs.

Sauf mention contraire, le contenu de cet ouvrage est publié sous la licence :
Creative Commons BY-NC-SA 2.0

La copie de cet ouvrage est autorisée sous réserve du respect des conditions de la licence
Texte complet de la licence disponible sur : http://creativecommons.org/licenses/by-nc-sa/2.0/fr/

Simple IT 2011 - ISBN : 978-2-9535278-3-4

Avant-propos

S
i vous lisez ces lignes, c'est que nous avons au moins deux choses en commun :
l'informatique vous intéresse et vous avez envie d'apprendre à programmer. En�n,
quand je dis en commun, je voulais dire en commun avec moi au moment où je

voulais apprendre la programmation.

Pour moi, tout a commencé sur un site maintenant très connu : le Site du Zéro. Étant
débutant et cherchant à tout prix des cours adaptés à mon niveau, je suis naturellement
tombé amoureux de ce site qui propose des cours d'informatique accessibles au plus
grand nombre. Vous l'aurez sans doute remarqué, trouver un cours d'informatique
simple et clair (sur les réseaux, les machines, la programmation. . .) est habituellement
un vrai parcours du combattant.

Je ne me suis pas découragé et je me suis professionnalisé, via une formation diplômante,
tout en suivant l'actualité de mon site préféré. . . Au sein de cette formation, j'ai pu voir
divers aspects de mon futur métier, notamment la programmation dans les langages
PHP, C#, JavaScript et, bien sûr, Java. Très vite, j'ai aimé travailler avec ce dernier,
d'une part parce qu'il est agréable à manipuler, souple à utiliser en demandant toutefois
de la rigueur (ce qui oblige à structurer ses programmes), et d'autre part parce qu'il
existe de nombreuses ressources disponibles sur Internet (mais pas toujours très claires
pour un débutant).

J'ai depuis obtenu mon diplôme et trouvé un emploi, mais je n'ai jamais oublié la
di�culté des premiers temps. Comme le Site du Zéro permet d'écrire des tutoriels et
de les partager avec la communauté, j'ai décidé d'employer les connaissances acquises
durant ma formation et dans mon travail à rédiger un tutoriel permettant d'aborder
mon langage de prédilection avec simplicité. J'ai donc pris mon courage à deux mains
et j'ai commencé à écrire. Beaucoup de lecteurs se sont rapidement montrés intéressés,
pour mon plus grand plaisir.

De ce fait, mon tutoriel a été mis en avant sur le site et, aujourd'hui, il est adapté dans
la collection � Livre du Zéro �. Je suis heureux du chemin parcouru, heureux d'avoir
pu aider tant de débutants et heureux de pouvoir vous aider à votre tour !

i

CHAPITRE 0. AVANT-PROPOS

Et Java dans tout ça ?

Java est un langage de programmation très utilisé, notamment par un grand nombre
de développeurs professionnels, ce qui en fait un langage incontournable actuellement.

Voici les caractéristiques de Java en quelques mots.

� Java est un langage de programmation moderne développé par Sun Microsystems,
aujourd'hui racheté par Oracle. Il ne faut surtout pas le confondre avec JavaScript
(langage de script utilisé sur les sites Web), car ils n'ont rien à voir.

� Une de ses plus grandes forces est son excellente portabilité : une fois votre pro-
gramme créé, il fonctionnera automatiquement sous Windows, Mac, Linux, etc.

� On peut faire de nombreux types de programmes avec Java :
� des applications, sous forme de fenêtre ou de console ;
� des applets, qui sont des programmes Java incorporés à des pages Web ;
� des applications pour appareils mobiles, comme les smartphones, avec J2ME (Java
2 Micro Edition) ;

� des sites web dynamiques, avec J2EE (Java 2 Enterprise Edition, maintenant
JEE) ;

� et bien d'autres : JMF (Java Media Framework), J3D pour la 3D. . .

Comme vous le voyez, Java permet de réaliser une très grande quantité d'applications
di�érentes ! Mais. . . comment apprendre un langage si vaste qui o�re tant de possi-
bilités ? Heureusement, ce livre est là pour tout vous apprendre sur Java à partir de
zéro.

Java est donc un langage de programmation, un langage dit compilé : il faut comprendre
par là que ce que vous allez écrire n'est pas directement compréhensible et utilisable
par votre ordinateur. Nous devrons donc passer par une étape de compilation (étape
obscure où votre code source est entièrement transformé). En fait, on peut distinguer
trois grandes phases dans la vie d'un code Java :

� la phase d'écriture du code source, en langage Java ;
� la phase de compilation de votre code ;
� la phase d'exécution.

Ces phases sont les mêmes pour la plupart des langages compilés (C, C++. . .). Par
contre, ce qui fait la particularité de Java, c'est que le résultat de la compilation n'est
pas directement utilisable par votre ordinateur.

Les langages mentionnés ci-dessus permettent de faire des programmes directement
compréhensibles par votre machine après compilation, mais avec Java, c'est légèrement
di�érent. En C++ par exemple, si vous voulez faire en sorte que votre programme soit
exploitable sur une machine utilisant Windows et sur une machine utilisant Linux, vous
allez devoir prendre en compte les spéci�cités de ces deux systèmes d'exploitation dans
votre code source et compiler une version spéciale pour chacun d'eux.

Avec Java, c'est un programme appelé la machine virtuelle qui va se charger de
retranscrire le résultat de la compilation en langage machine, interprétable par celle-ci.
Vous n'avez pas à vous préoccuper des spéci�cités de la machine qui va exécuter votre
programme : la machine virtuelle Java s'en charge pour vous !

ii

QU'ALLEZ-VOUS APPRENDRE EN LISANT CE LIVRE ?

Qu'allez-vous apprendre en lisant ce livre ?

Ce livre a été conçu en partant du principe que vous ne connaissez rien à la program-
mation. Voilà le plan en quatre parties que nous allons suivre tout au long de cet
ouvrage.

1. Les bases de Java : nous verrons ici ce qu'est Java et comment il fonctionne.
Nous créerons notre premier programme, en utilisant des variables, des opéra-
teurs, des conditions, des boucles. . . Nous apprendrons les bases du langage, qui
vous seront nécessaires par la suite.

2. Java et la Programmation Orientée Objet : après avoir dompté les bases
du langage, vous allez devoir apprivoiser une notion capitale : l'objet. Vous ap-
prendrez à encapsuler vos morceaux de code a�n de les rendre modulables et
réutilisables, mais il y aura du travail à fournir.

3. Les interfaces graphiques : là, nous verrons comment créer des interfaces
graphiques et comment les rendre interactives. C'est vrai que jusqu'à présent,
nous avons travaillé en mode console. Il faudra vous accrocher un peu car il
y a beaucoup de composants utilisables, mais le jeu en vaut la chandelle ! Nous
passerons en revue di�érents composants graphiques tels que les champs de texte,
les cases à cocher, les tableaux, les arbres ainsi que quelques notions spéci�ques
comme le drag'n drop.

4. Interactions avec les bases de données : de nos jours, avec la course aux don-
nées, beaucoup de programmes doivent interagir avec ce qu'on appelle des bases
de données. Dans cette partie, nous verrons comment s'y connecter, comment
récupérer des informations et comment les exploiter.

Comment lire ce livre ?

Suivez l'ordre des chapitres

Lisez ce livre comme on lit un roman. Il a été conçu de cette façon.

Contrairement à beaucoup de livres techniques où il est courant de lire en diagonale et
de sauter certains chapitres, ici il est très fortement recommandé de suivre l'ordre du
cours, à moins que vous ne soyez déjà un peu expérimentés.

Pratiquez en même temps

Pratiquez régulièrement. N'attendez pas d'avoir �ni la lecture de ce livre pour allumer
votre ordinateur et faire vos propres essais.

iii

CHAPITRE 0. AVANT-PROPOS

Utilisez les codes web !

A�n de tirer parti du Site du Zéro dont est issu ce livre, celui-ci vous propose ce qu'on
appelle des � codes web �. Ce sont des codes à six chi�res à entrer sur une page du Site
du Zéro pour être automatiquement redirigé vers un site web sans avoir à en recopier
l'adresse.

Pour utiliser les codes web, rendez-vous sur la page suivante 1 :

http://www.siteduzero.com/codeweb.html

Un formulaire vous invite à rentrer votre code web. Faites un premier essai avec le code
ci-dessous :

B

�

�
	Tester le code web

Code web : 123456

Ces codes web ont deux intérêts :

� vous faire télécharger les codes source inclus dans ce livre, ce qui vous évitera d'avoir
à recopier certains codes un peu longs ;

� vous rediriger vers les sites web présentés tout au long du cours.

Ce système de redirection nous permet de tenir à jour le livre que vous avez entre les
mains sans que vous ayez besoin d'acheter systématiquement chaque nouvelle édition.
Si un site web change d'adresse, nous modi�erons la redirection mais le code web à
utiliser restera le même. Si un site web disparaît, nous vous redirigerons vers une page
du Site du Zéro expliquant ce qui s'est passé et vous proposant une alternative.

En clair, c'est un moyen de nous assurer de la pérennité de cet ouvrage sans que vous
ayez à faire quoi que ce soit !

Ce livre est issu du Site du Zéro

Cet ouvrage reprend le cours Java présent sur le Site du Zéro dans une édition revue
et corrigée, avec de nombreuses mises à jour.

Il reprend les éléments qui ont fait le succès des cours du site, c'est-à-dire leur approche
progressive et pédagogique, le ton décontracté et léger, ainsi que les TP vous permettant
de réellement pratiquer de façon autonome.

Ce livre s'adresse donc à toute personne désireuse d'apprendre les bases de la program-
mation en Java, que ce soit :
� par curiosité ;
� par intérêt personnel ;
� par besoin professionnel.

1. Vous pouvez aussi utiliser le formulaire de recherche du Site du Zéro, section � Code Web �.

iv

REMERCIEMENTS

Remerciements

Comme pour la plupart des ouvrages, beaucoup de personnes ont participé de près ou
de loin à l'élaboration de ce livre et j'en pro�te donc pour les en remercier.

� Ma compagne, Manuela, qui me supporte et qui tolère mes heures passées à écrire
les tutoriels pour le Site du Zéro. Un merci spécial à toi qui me prends dans tes bras
lorsque ça ne va pas, qui m'embrasses lorsque je suis triste, qui me souris lorsque je
te regarde, qui me donnes tant d'amour lorsque le temps est maussade : pour tout
ça et plus encore, je t'aime ;

� Agnès HAASSER (Tûtie), Damien SMEETS (Karl Yeurl), Mickaël SALAMIN (mi-
cky), François GLORIEUX (Nox), Christophe TAFANI-DEREEPER, Romain CAM-
PILLO (Le Chapelier Toqué), Charles DUPRÉ (Barbatos), Maxence CORDIEZ
(Ziame), Philippe LUTUN (ptipilou), zCorrecteurs m'ayant accompagné dans la cor-
rection de cet ouvrage ;

� Mathieu NEBRA (alias M@teo21), père fondateur du Site du Zéro, qui m'a fait
con�ance, soutenu dans mes démarches et qui m'a donné de précieux conseils ;

� Tous les Zéros qui m'ont apporté leur soutien et leurs remarques ;
� Toutes les personnes qui m'ont contacté pour me faire des suggestions et m'apporter
leur expertise.

Merci aussi à toutes celles et ceux qui m'ont apporté leur soutien et qui me permettent
d'apprendre toujours plus au quotidien, mes collègues de travail :

� Thomas, qui a toujours des questions sur des sujets totalement délirants ;
� Angelo, mon chef adoré, qui est un puits de science en informatique ;
� Olivier, la force zen, qui n'a pas son pareil pour aller droit au but ;
� Dylan, discret mais d'une compétence plus que certaine dans des domaines aussi
divers que variés ;

� Jérôme, que j'ai martyrisé mais qui, j'en suis persuadé, a adoré. . . :-)

v

Sommaire

Avant-propos i

Et Java dans tout ça ? . ii

Qu'allez-vous apprendre en lisant ce livre ? iii

Comment lire ce livre ? . iii

Ce livre est issu du Site du Zéro . iv

Remerciements . v

I Les bases de Java 1

1 Installer les outils de développement 3

Installer les outils nécessaires . 4

Votre premier programme . 14

2 Les variables et les opérateurs 23

Les di�érents types de variables . 24

Les opérateurs arithmétiques . 27

Les conversions, ou � cast � . 30

3 Lire les entrées clavier 33

La classe Scanner . 34

Récupérer ce que vous tapez . 35

4 Les conditions 39

vii

SOMMAIRE

La structure if... else . 40

La structure switch . 43

La condition ternaire . 44

5 Les boucles 47

La boucle while . 48

La boucle do... while . 52

La boucle for . 53

6 TP : conversion Celsius - Fahrenheit 55

Élaboration . 56

Correction . 57

7 Les tableaux 61

Tableau à une dimension . 62

Les tableaux multidimensionnels . 62

Utiliser et rechercher dans un tableau . 63

8 Les méthodes de classe 69

Quelques méthodes utiles . 70

Créer sa propre méthode . 72

La surcharge de méthode . 75

II Java et la Programmation Orientée Objet 79

9 Votre première classe 81

Structure de base . 82

Les constructeurs . 83

Accesseurs et mutateurs . 88

Les variables de classes . 94

Le principe d'encapsulation . 96

10 L'héritage 99

Le principe de l'héritage . 100

Le polymorphisme . 104

viii

SOMMAIRE

11 Modéliser ses objets grâce à UML 111

Présentation d'UML . 112

Modéliser ses objets . 113

Modéliser les liens entre les objets . 114

12 Les packages 119

Création d'un package . 120

Droits d'accès entre les packages . 121

13 Les classes abstraites et les interfaces 123

Les classes abstraites . 124

Les interfaces . 133

Le pattern strategy . 137

14 Les exceptions 157

Le bloc try{...} catch{...} . 158

Les exceptions personnalisées . 160

La gestion de plusieurs exceptions . 164

15 Les �ux d'entrée/sortie 167

Utilisation de java.io . 168

Utilisation de java.nio . 187

Le pattern decorator . 190

16 Les énumérations 197

Avant les énumérations . 198

Une solution : les enum . 199

17 Les collections d'objets 203

Les di�érents types de collections . 204

Les objets List . 205

Les objets Map . 208

Les objets Set . 209

18 La généricité en Java 213

Principe de base . 214

Généricité et collections . 219

ix

SOMMAIRE

19 Java et la ré�exivité 227

L'objet Class . 228

Instanciation dynamique . 232

III Les interfaces graphiques 237

20 Notre première fenêtre 239

L'objet JFrame . 240

L'objet JPanel . 245

Les objets Graphics et Graphics2D . 246

21 Le �l rouge : une animation 259

Création de l'animation . 260

Améliorations . 263

22 Positionner des boutons 269

Utiliser la classe JButton . 270

Positionner son composant : les layout managers 272

23 Interagir avec des boutons 289

Une classe Bouton personnalisée . 290

Interagir avec son bouton . 298

Être à l'écoute de ses objets : le design pattern Observer 318

Cadeau : un bouton personnalisé optimisé . 327

24 TP : une calculatrice 331

Élaboration . 332

Conception . 332

Correction . 333

Générer un .jar exécutable . 338

25 Exécuter des tâches simultanément 345

Une classe héritée de Thread . 346

Utiliser l'interface Runnable . 350

Synchroniser ses threads . 354

Contrôler son animation . 355

x

SOMMAIRE

26 Les champs de formulaire 359

Les listes : l'objet JComboBox . 360

Les cases à cocher : l'objet JCheckBox . 370

Les champs de texte : l'objet JTextField . 381

Contrôle du clavier : l'interface KeyListener 385

27 Les menus et boîtes de dialogue 391

Les boîtes de dialogue . 392

Les menus . 408

28 TP : l'ardoise magique 439

Cahier des charges . 440

Prérequis . 441

Correction . 442

Améliorations possibles . 448

29 Conteneurs, sliders et barres de progression 449

Autres conteneurs . 450

Enjoliver vos IHM . 467

30 Les arbres et leur structure 471

La composition des arbres . 472

Des arbres qui vous parlent . 476

Décorez vos arbres . 481

Modi�er le contenu de nos arbres . 486

31 Les interfaces de tableaux 495

Premiers pas . 496

Gestion de l'a�chage . 497

Interaction avec l'objet JTable . 508

Ajouter des lignes et des colonnes . 515

32 TP : le pendu 519

Cahier des charges . 520

Prérequis . 522

Correction . 522

xi

SOMMAIRE

33 Mieux structurer son code : le pattern MVC 525

Premiers pas . 526

Le modèle . 528

Le contrôleur . 531

La vue . 534

34 Le Drag'n Drop 539

Présentation . 540

Fonctionnement . 543

Créer son propre TransferHandler . 547

Activer le drop sur un JTree . 553

E�et de déplacement . 558

35 Mieux gérer les interactions avec les composants 565

Présentation des protagonistes . 566

Utiliser l'EDT . 567

La classe SwingWorker<T, V> . 570

IV Interactions avec les bases de données 577

36 JDBC : la porte d'accès aux bases de données 579

Rappels sur les bases de données . 580

Préparer la base de données . 584

Se connecter à la base de données . 591

37 Fouiller dans sa base de données 597

Le couple Statement � ResultSet . 598

Les requêtes préparées . 607

Modi�er des données . 613

Statement, toujours plus fort . 615

Gérer les transactions manuellement . 617

38 Limiter le nombre de connexions 621

Pourquoi ne se connecter qu'une seule fois ? 622

Le pattern singleton . 622

xii

SOMMAIRE

Le singleton dans tous ses états . 625

39 TP : un testeur de requêtes 629

Cahier des charges . 630

Quelques captures d'écran . 630

Correction . 630

40 Lier ses tables avec des objets Java : le pattern DAO 633

Avant toute chose . 634

Le pattern DAO . 639

Le pattern factory . 649

xiii

Chapitre 1
Installer les outils de développement

Di�culté :

L
'un des principes phares de Java réside dans sa machine virtuelle : celle-ci assure à
tous les développeurs Java qu'un programme sera utilisable avec tous les systèmes
d'exploitation sur lesquels est installée une machine virtuelle Java. Lors de la phase

de compilation de notre code source, celui-ci prend une forme intermédiaire appelée byte
code : c'est le fameux code inintelligible pour votre machine, mais interprétable par la
machine virtuelle Java. Cette dernière porte un nom : on parle plus communément de JRE
(Java Runtime Environment). Plus besoin de se soucier des spéci�cités liées à tel ou tel
OS (Operating System, soit système d'exploitation). Nous pourrons donc nous consacrer
entièrement à notre programme.

A�n de nous simpli�er la vie, nous allons utiliser un outil de développement, ou IDE
(Integrated Development Environment), pour nous aider à écrire nos futurs codes source. . .
Nous allons donc avoir besoin de di�érentes choses a�n de pouvoir créer des programmes
Java : la première est ce fameux JRE !

3

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

Installer les outils nécessaires

JRE ou JDK

Téléchargez votre environnement Java sur le site d'Oracle.

B

�

�
	Télécharger JRE

Code web : 924260

Choisissez la dernière version stable (�gure 1.1).

Figure 1.1 � Encart de téléchargement

Vous avez sans doute remarqué qu'on vous propose de télécharger soit le JRE, soit le
JDK 1. La di�érence entre ces deux environnements est écrite, mais pour les personnes
fâchées avec l'anglais, sachez que le JRE contient tout le nécessaire pour faire en sorte
que vos programmes Java puissent être exécutés sur votre ordinateur ; le JDK, en plus
de contenir le JRE, contient tout le nécessaire pour développer, compiler. . .

L'IDE contenant déjà tout le nécessaire pour le développement et la compilation, nous
n'avons besoin que du JRE. Une fois que vous avez cliqué sur � Download JRE �, vous
arrivez sur la page correspondante (�gure 1.2).

Sélectionnez votre système d'exploitation et cochez la case : � I agree to the Java

SE Development Kit 6 License Agreement �. Lorsque vous serez à l'écran corres-
pondant (�gure 1.3), sélectionnez celui de votre choix puis validez.

Je vous ai dit que Java permet de développer di�érents types d'applications : il y a
donc des environnements permettant de créer des programmes pour di�érentes plates-
formes.

� J2SE 2 : permet de développer des applications dites � client lourd �, par exemple

1. Java Development Kit.
2. Java 2 Standard Edition, celui qui nous intéresse dans cet ouvrage.

4

INSTALLER LES OUTILS NÉCESSAIRES

Figure 1.2 � Page de choix de votre système d'exploitation

Figure 1.3 � Choix de l'exécutable

5

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

Word, Excel, la suite OpenO�ce.org. . . Toutes ces applications sont des � clients
lourds �. C'est ce que nous allons faire dans ce livre.

� J2EE 3 : permet de développer des applications web en Java. On parle aussi de clients
légers.

� J2ME 4 : permet de développer des applications pour appareils portables, comme des
téléphones portables, des PDA. . .

Eclipse IDE

Avant toute chose, quelques mots sur le projet Eclipse.

Eclipse IDE est un environnement de développement libre permettant de créer des
programmes dans de nombreux langages de programmation (Java, C++, PHP. . .).
C'est en somme l'outil que nous allons utiliser pour programmer.

Eclipse IDE est lui-même principalement écrit en Java.

Je vous invite donc à télécharger Eclipse IDE.

B

�

�
	Télécharger Eclipse

Code web : 395144

Accédez à la page de téléchargement puis choisissez � Eclipse IDE for Java Developers �,
en choisissant la version d'Eclipse correspondant à votre OS 5 (�gure 1.4).

Figure 1.4 � Version d'Eclipse IDE

Sélectionnez maintenant le miroir que vous souhaitez utiliser pour obtenir Eclipse.
Voilà, vous n'avez plus qu'à attendre la �n du téléchargement.

Pour ceux qui l'avaient deviné, Eclipse est le petit logiciel qui va nous permettre de
développer nos applications ou nos applets, et aussi celui qui va compiler tout ça. Notre
logiciel va donc permettre de traduire nos futurs programmes Java en langage byte
code, compréhensible uniquement par votre JRE, fraîchement installé.

La spéci�cité d'Eclipse IDE vient du fait que son architecture est totalement développée
autour de la notion de plug-in. Cela signi�e que toutes ses fonctionnalités sont déve-
loppées en tant que plug-ins. Pour faire court, si vous voulez ajouter des fonctionnalités
à Eclipse, vous devez :

3. Java 2 Enterprise Edition.
4. Java 2 Micro Edition.
5. Operating System = système d'exploitation.

6

INSTALLER LES OUTILS NÉCESSAIRES

� télécharger le plug-in correspondant ;
� copier les �chiers spéci�és dans les répertoires spéci�és ;
� démarrer Eclipse, et ça y est !

Lorsque vous téléchargez un nouveau plug-in pour Eclipse, celui-ci se présente
souvent comme un dossier contenant généralement deux sous-dossiers : un
dossier � plugins � et un dossier � features �. Ces dossiers existent aussi
dans le répertoire d'Eclipse. Il vous faut donc copier le contenu des dossiers
de votre plug-in vers le dossier correspondant dans Eclipse (plugins dans
plugins, et features dans features).

Vous devez maintenant avoir une archive contenant Eclipse. Décompressez-la où vous
voulez, puis entrez dans ce dossier (�gure 1.5). Cela fait, lancez Eclipse.

Figure 1.5 � Contenu du dossier Eclipse

Ici (�gure 1.6), Eclipse vous demande dans quel dossier vous souhaitez enregistrer vos
projets ; sachez que rien ne vous empêche de spéci�er un autre dossier que celui proposé
par défaut.

Figure 1.6 � Première fenêtre Eclipse

7

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

Une fois cette étape e�ectuée, vous arrivez sur la page d'accueil d'Eclipse. Si vous avez
envie d'y jeter un ÷il, allez-y.

Présentation rapide de l'interface

Je vais maintenant vous faire faire un tour rapide de l'interface d'Eclipse.

Le menu � File � (�gure 1.7)

Figure 1.7 � Menu � File �

C'est ici que nous pourrons créer de nouveaux projets Java, les enregistrer et les ex-
porter le cas échéant. Les raccourcis à retenir sont :

� ALT + SHIFT + N : nouveau projet ;
� CTRL + S : enregistrer le �chier où l'on est positionné ;
� CTRL + SHIFT + S : tout sauvegarder ;
� CTRL + W : fermer le �chier où l'on est positionné ;
� CTRL + SHIFT + W : fermer tous les �chiers ouverts.

8

INSTALLER LES OUTILS NÉCESSAIRES

Figure 1.8 � Menu � Edit �

Le menu � Edit � (�gure 1.8)

Dans ce menu, nous pourrons utiliser les commandes � copier �, � coller �, etc. Ici,
les raccourcis à retenir sont :

� CTRL + C : copier la sélection ;
� CTRL + X : couper la sélection ;
� CTRL + V : coller la sélection ;
� CTRL + A : tout sélectionner ;
� CTRL + F : chercher-remplacer.

Le menu � Window � (�gure 1.9)

Figure 1.9 � Menu � Window �

9

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

Dans celui-ci, nous pourrons con�gurer Eclipse selon nos besoins.

La barre d'outils (�gure 1.10)

Figure 1.10 � Barre d'outils

Nous avons dans l'ordre :

1. nouveau général. Cliquer sur ce bouton revient à faire � Fichier / Nouveau � ;

2. enregistrer. Revient à faire CTRL + S ;

3. imprimer ;

4. exécuter la classe ou le projet spéci�é. Nous verrons ceci plus en détail ;

5. créer un nouveau projet. Revient à faire � Fichier / Nouveau / Java Project � ;

6. créer une nouvelle classe, c'est-à-dire en fait un nouveau �chier. Revient à faire
� Fichier / Nouveau / Classe �.

Maintenant, je vais vous demander de créer un nouveau projet Java (�gures 1.11 et
1.12).

Figure 1.11 � Création de projet Java - étape 1

Renseignez le nom de votre projet comme je l'ai fait (encadré 1). Vous pouvez aussi
voir où sera enregistré ce projet (encadré 2). Un peu plus compliqué, maintenant : vous
avez donc un environnement Java sur votre machine, mais dans le cas où vous en auriez
plusieurs, vous pouvez aussi spéci�er à Eclipse quel JRE 6 utiliser pour ce projet.

Vous devriez avoir un nouveau projet dans la fenêtre de gauche (�gure 1.13).

6. Vous pourrez changer ceci à tout moment dans Eclipse en allant dans � Window / Preferences �,
en dépliant l'arbre � Java � dans la fenêtre et en choisissant � Installed JRE �.

10

INSTALLER LES OUTILS NÉCESSAIRES

Figure 1.12 � Création de projet Java - étape 2

Figure 1.13 � Explorateur de projet

11

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

Pour boucler la boucle, ajoutons dès maintenant une nouvelle classe dans ce projet
comme nous avons appris à le faire plus tôt.
Voici la fenêtre sur laquelle vous devriez tomber : �gure 1.14.

Une classe est un ensemble de codes contenant plusieurs instructions que
doit e�ectuer votre programme. Ne vous attardez pas trop sur ce terme, nous
aurons l'occasion d'y revenir.

Figure 1.14 � Création d'une classe

Dans l'encadré 1, nous pouvons voir où seront enregistrés nos �chiers Java. Dans l'en-
cadré 2, nommez votre classe Java ; moi, j'ai choisi sdz1. Dans l'encadré 3, Eclipse vous
demande si cette classe a quelque chose de particulier. Eh bien oui ! Cochez � public

static void main(String[] args) 7 �, puis cliquez sur � Finish �.

Avant de commencer à coder, nous allons explorer l'espace de travail (�gure 1.15).

Dans l'encadré de gauche, vous trouverez le dossier de votre projet ainsi que son
contenu. Ici, vous pourrez gérer votre projet comme bon vous semble (ajout, sup-
pression. . .).

Dans l'encadré positionné au centre, je pense que vous avez deviné : c'est ici que nous

7. Nous reviendrons plus tard sur ce point.

12

INSTALLER LES OUTILS NÉCESSAIRES

Figure 1.15 � Fenêtre principale

13

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

allons écrire nos codes source.

Dans l'encadré du bas, c'est là que vous verrez apparaître le contenu de vos pro-
grammes. . . ainsi que les erreurs éventuelles !

Et pour �nir, c'est dans l'encadré de droite, dès que nous aurons appris à coder nos
propres fonctions et nos objets, que la liste des méthodes et des variables sera a�chée.

Votre premier programme

Comme je vous l'ai maintes fois répété, les programmes Java sont, avant d'être utilisés
par la machine virtuelle, précompilés en byte code (par votre IDE ou à la main). Ce
byte code n'est compréhensible que par une JVM, et c'est celle-ci qui va faire le lien
entre ce code et votre machine.

Vous aviez sûrement remarqué que sur la page de téléchargement du JRE, plusieurs
liens étaient disponibles :

� un lien pour Windows ;
� un lien pour Mac ;
� un lien pour Linux.

Ceci, car la machine virtuelle Java se présente di�éremment selon qu'on se trouve
sous Mac, sous Linux ou encore sous Windows. Par contre, le byte code, lui, reste le
même quel que soit l'environnement avec lequel a été développé et précompilé votre
programme Java.

Conséquence directe : quel que soit l'OS sous lequel a été codé un programme
Java, n'importe quelle machine pourra l'exécuter si elle dispose d'une JVM !

Tu n'arrêtes pas de nous rabâcher byte code par-ci, byte code par-là. . . Mais
c'est quoi, au juste ?

Eh bien, un byte code 8 n'est rien d'autre qu'un code intermédiaire entre votre code
Java et le code machine. Ce code particulier se trouve dans les �chiers précompilés
de vos programmes ; en Java, un �chier source a pour extension .java et un �chier
précompilé a l'extension .class : c'est dans ce dernier que vous trouverez du byte code.
Je vous invite à examiner un �chier .class à la �n de cette partie (vous en aurez au
moins un), mais je vous préviens, c'est illisible !

Par contre, vos �chiers .java sont de simples �chiers texte dont l'extension a été
changée. Vous pouvez donc les ouvrir, les créer ou encore les mettre à jour avec le
Bloc-notes de Windows, par exemple. Cela implique que, si vous le souhaitez, vous
pouvez écrire des programmes Java avec le Bloc-notes ou encore avec Notepad++.

8. Il existe plusieurs types de byte code, mais nous parlons ici de celui créé par Java.

14

VOTRE PREMIER PROGRAMME

Reprenons. Vous devez savoir que tous les programmes Java sont composés d'au
moins une classe.

Cette classe doit contenir une méthode appelée main : ce sera le point de démarrage
de notre programme.

Une méthode est une suite d'instructions à exécuter. C'est un morceau de logique de
notre programme. Une méthode contient :

� un en-tête : celui-ci va être en quelque sorte la carte d'identité de la méthode ;
� un corps : le contenu de la méthode, délimité par des accolades ;
� une valeur de retour : le résultat que la méthode va retourner.

Vous verrez un peu plus tard qu'un programme n'est qu'une multitude de
classes qui s'utilisent l'une l'autre. Mais pour le moment, nous n'allons tra-
vailler qu'avec une seule classe.

Je vous avais demandé de créer un projet Java ; ouvrez-le (�gure 1.16).

Figure 1.16 � Méthode principale

Vous voyez la fameuse classe dont je vous parlais ? Ici, elle s'appelle � sdz1 �. Vous pou-
vez voir que le mot class est précédé du mot public, dont nous verrons la signi�cation
lorsque nous programmerons des objets.

Pour le moment, ce que vous devez retenir, c'est que votre classe est dé�nie par un
mot clé (class), qu'elle a un nom (ici, sdz1) et que son contenu est délimité par des
accolades ({}).

Nous écrirons nos codes sources entre la méthode main. La syntaxe de cette méthode
est toujours la même :

public static void main(String[] args){
//Contenu de votre classe
}

Ce sera entre les accolades de la méthode main que nous écrirons nos codes
source.

15

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

Excuse-nous, mais. . . pourquoi as-tu écrit � //Contenu de votre classe � et
pas � Contenu de votre classe � ?

Bonne question ! Je vous ai dit plus haut que votre programme Java, avant de pou-
voir être exécuté, doit être précompilé en byte code. Eh bien, la possibilité de forcer
le compilateur à ignorer certaines instructions existe ! C'est ce qu'on appelle des com-
mentaires, et deux syntaxes sont disponibles pour commenter son texte.

� Il y a les commentaires unilignes : introduits par les symboles //, ils mettent tout
ce qui les suit en commentaire, du moment que le texte se trouve sur la même ligne
que les //.

public static void main(String[] args){
//Un commentaire
//Un autre
//Encore un autre
Ceci n'est pas un commentaire !
}

� Il y a les commentaires multilignes : ils sont introduits par les symboles /* et se
terminent par les symboles */.

public static void main(String[] args){

/*
Un commentaire
Un autre
Encore un autre
*/
Ceci n'est pas un commentaire !
}

D'accord, mais ça sert à quoi ?

C'est simple : au début, vous ne ferez que de très petits programmes. Mais dès que
vous aurez pris de la bouteille, leurs tailles et le nombre de classes qui les composeront
vont augmenter. Vous serez contents de trouver quelques lignes de commentaires au
début de votre classe pour vous dire à quoi elle sert, ou encore des commentaires dans
une méthode qui e�ectue des choses compliquées a�n de savoir où vous en êtes dans
vos traitements. . .

Il existe en fait une troisième syntaxe, mais elle a une utilité particulière. Elle permettra
de générer une documentation pour votre programme : une Javadoc (Java Documenta-

16

VOTRE PREMIER PROGRAMME

tion). Je n'en parlerai que très peu, et pas dans ce chapitre. Nous verrons cela lorsque
nous programmerons des objets, mais pour les curieux, je vous conseille le très bon
cours de dworkin sur ce sujet disponible sur le Site du Zéro.

B

�

�
	Présentation de la Javadoc

Code web : 478278

À partir de maintenant et jusqu'à ce que nous programmions des interfaces graphiques,
nous allons faire ce qu'on appelle des programmes procéduraux. Cela signi�e que le
programme s'exécutera de façon procédurale, c'est-à-dire qui s'e�ectue de haut en bas,
une ligne après l'autre. Bien sûr, il y a des instructions qui permettent de répéter des
morceaux de code, mais le programme en lui-même se terminera une fois parvenu à la
�n du code. Cela vient en opposition à la programmation événementielle (ou graphique)
qui, elle, est basée sur des événements (clic de souris, choix dans un menu. . .).

Hello World

Maintenant, essayons de taper le code suivant :

public static void main(String[] args){
System.out.print("Hello World !");

}

N'oubliez surtout pas le " ; " à la �n de la ligne ! Toutes les instructions
en Java sont suivies d'un point-virgule.

Une fois que vous avez saisi cette ligne de code dans votre méthode main, il vous faut
lancer le programme. Si vous vous souvenez bien de la présentation faite précédemment,
vous devez cliquer sur la �èche blanche dans un rond vert (�gure 1.17).

Figure 1.17 � Bouton de lancement du programme

Si vous regardez dans votre console, dans la fenêtre du bas sous Eclipse, vous devriez
voir la �gure 1.18.

Expliquons un peu cette ligne de code. Littéralement, elle signi�e � la méthode print()
va écrire Hello World ! en utilisant l'objet out de la classe System �.

� System : ceci correspond à l'appel d'une classe qui se nomme � System �. C'est une
classe utilitaire qui permet surtout d'utiliser l'entrée et la sortie standard, c'est-à-dire
la saisie clavier et l'a�chage à l'écran.

� out : objet de la classe System qui gère la sortie standard.

17

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

Figure 1.18 � Console d'Eclipse

� print : méthode qui écrit dans la console le texte passé en paramètre.

Si vous mettez plusieurs System.out.print, voici ce qui se passe. Prenons ce code :

System.out.print("Hello World !");
System.out.print("My name is");
System.out.print("Cysboy");

Lorsque vous l'exécutez, vous devriez voir des chaînes de caractères qui se suivent sans
saut de ligne. Autrement dit, ceci s'a�chera dans votre console :

Hello World !My name isCysboy

Je me doute que vous souhaiteriez insérer un retour à la ligne pour que votre texte soit
plus lisible. . . Pour cela, vous avez plusieurs solutions :

� soit vous utilisez un caractère d'échappement, ici \n ;
� soit vous utilisez la méthode println() à la place de la méthode print().

Donc, si nous reprenons notre code précédent et que nous appliquons cela, voici ce que
ça donnerait :

System.out.print("Hello World ! \n");
System.out.println("My name is");
System.out.println("\nCysboy");

Le résultat :

Hello World !

My name is

Cysboy

Vous pouvez voir que :

� lorsque vous utilisez le caractère d'échappement \n, quelle que soit la méthode ap-
pelée, celle-ci ajoute immédiatement un retour à la ligne à son emplacement ;

� lorsque vous utilisez la méthode println(), celle-ci ajoute automatiquement un
retour à la ligne à la �n de la chaîne passée en paramètre ;

� un caractère d'échappement peut être mis dans la méthode println().

J'en pro�te au passage pour vous mentionner deux autres caractères d'échappement :

18

VOTRE PREMIER PROGRAMME

� \r va insérer un retour chariot, parfois utilisé aussi pour les retours à la ligne ;
� \t va faire une tabulation.

Vous avez sûrement remarqué que la chaîne de caractères que l'on a�che est
entourée de "<chaîne>". En Java, les guillemets doubles 9 sont des délimi-
teurs de chaînes de caractères ! Si vous voulez a�cher un guillemet double
dans la sortie standard, vous devrez � l'échapper 10 � avec un \, ce qui don-
nerait : System.out.println("Coucou mon \"chou\" ! ");.

Je vous propose maintenant de passer un peu de temps sur la compilation de vos
programmes en ligne de commande. Cette section n'est pas obligatoire, loin de là, mais
elle ne peut être qu'enrichissante.

Compilation en ligne de commande (Windows)

Bienvenue donc aux plus curieux ! Avant de vous apprendre à compiler et à exécuter un
programme en ligne de commande, il va vous falloir le JDK (Java SEDevelopmentKit).
C'est avec celui-ci que nous aurons de quoi compiler nos programmes. Le nécessaire
à l'exécution des programmes est dans le JRE. . . mais il est également inclus dans le
JDK.

Je vous invite donc à retourner sur le site d'Oracle et à télécharger ce dernier. Une fois
cette opération e�ectuée, il est conseillé de mettre à jour votre variable d'environnement
%PATH%.

Euh. . . quoi ?

Votre variable d'environnement. C'est grâce à elle que Windows trouve des exécu-
tables sans qu'il soit nécessaire de lui spéci�er le chemin d'accès complet. Vous � en�n,
Windows � en a plusieurs, mais nous ne nous intéresserons qu'à une seule. En gros,
cette variable contient le chemin d'accès à certains programmes.

Par exemple, si vous spéci�ez le chemin d'accès à un programme X dans votre variable
d'environnement et que, par un malheureux hasard, vous n'avez plus aucun raccourci
vers X : vous l'avez dé�nitivement perdu dans les méandres de votre PC. Eh bien vous
pourrez le lancer en faisant � Démarrer → Exécuter � et en tapant la commande
� X.exe � (en partant du principe que le nom de l'exécutable est X.exe).

D'accord, mais comment fait-on ? Et pourquoi doit-on faire ça pour le JDK ?

9. Il n'est pas rare de croiser le terme anglais quote pour désigner les guillemets droits. Cela fait
en quelque sorte partie du jargon du programmeur.
10. Terme désignant le fait de désactiver : ici, désactiver la fonction du caractère � " �.

19

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

J'y arrive. Une fois votre JDK installé, ouvrez le répertoire bin de celui-ci, ainsi que
celui de votre JRE. Nous allons nous attarder sur deux �chiers.

Dans le répertoire bin de votre JRE, vous devez avoir un �chier nommé java.exe.
Fichier que vous retrouvez aussi dans le répertoire bin de votre JDK. C'est grâce à
ce �chier que votre ordinateur peut lancer vos programmes par le biais de la JVM. Le
deuxième ne se trouve que dans le répertoire bin de votre JDK, il s'agit de javac.exe 11.
C'est celui-ci qui va précompiler vos programmes Java en byte code.

Alors, pourquoi mettre à jour la variable d'environnement pour le JDK? Eh bien,
compiler et exécuter en ligne de commande revient à utiliser ces deux �chiers en leur
précisant où se trouvent les �chiers à traiter. Cela veut dire que si l'on ne met pas à
jour la variable d'environnement de Windows, il nous faudrait :

� ouvrir l'invite de commande ;
� se positionner dans le répertoire bin de notre JDK ;
� appeler la commande souhaitée ;
� préciser le chemin du �chier .java ;
� renseigner le nom du �chier.

Avec notre variable d'environnement mise à jour, nous n'aurons plus qu'à :

� nous positionner dans le dossier de notre programme ;
� appeler la commande ;
� renseigner le nom du �chier Java.

Allez dans le � Panneau de configuration � de votre PC ; de là, cliquez sur l'icône
� Système � ; choisissez l'onglet � Avancé � et vous devriez voir en bas un bouton nommé
� Variables d'environnement � : cliquez dessus. Une nouvelle fenêtre s'ouvre. Dans
la partie inférieure intitulée � Variables système �, cherchez la variable Path. Une
fois sélectionnée, cliquez sur � Modifier �. Encore une fois, une fenêtre, plus petite
celle-ci, s'ouvre devant vous. Elle contient le nom de la variable et sa valeur.

Ne changez pas son nom et n'e�acez pas son contenu ! Nous allons juste
ajouter un chemin d'accès.

Pour ce faire, allez jusqu'au bout de la valeur de la variable, ajoutez-y un point-virgule
(;) s'il n'y en a pas, et ajoutez alors le chemin d'accès au répertoire bin de votre JDK,
en terminant celui-ci par un point-virgule !

Chez moi, ça donne ceci : � C:\Sun\SDK\jdk\bin �.

Auparavant, ma variable d'environnement contenait, avant mon ajout :

%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;

Et maintenant :

%SystemRoot%\system32;%SystemRoot%;%SystemRoot%\System32\Wbem;C:\Sun\SDK\jdk\bin;

11. Java compiler.

20

VOTRE PREMIER PROGRAMME

Validez les changements : vous êtes maintenant prêts à compiler en ligne de commande.

Pour bien faire, allez dans le répertoire de votre premier programme et e�acez le .class.
Ensuite, faites � Démarrer > Exécuter 12 � et tapez � cmd �.

Pour rappel, dans l'invite de commande, on se déplace de dossier en dossier
grâce à l'instruction cd. cd <nom du dossier enfant> : pour aller dans
un dossier contenu dans celui dans lequel nous nous trouvons. cd .. : pour
remonter d'un dossier dans la hiérarchie.

Par exemple, lorsque j'ouvre la console, je me trouve dans le dossier C:\toto\titi et
mon application se trouve dans le dossier C:\sdz, je fais donc :

cd ..
cd ..
cd sdz

Après de la première instruction, je me retrouve dans le dossier C:\toto. Grâce à la
deuxième instruction, j'arrive à la racine de mon disque. Via la troisième instruction, je
me retrouve dans le dossier C:\sdz. Nous sommes maintenant dans le dossier contenant
notre �chier Java !

Cela dit, nous pouvions condenser cela en :

cd ../../sdz

Maintenant, vous pouvez créer votre �chier .class en exécutant la commande sui-
vante :

javac <nomDeFichier.java>

Si, dans votre dossier, vous avez un �chier test.java, compilez-le en faisant : javac
test.java. Et si vous n'avez aucun message d'erreur, vous pouvez véri�er que le �chier
test.class est présent en utilisant l'instruction dir qui liste le contenu d'un répertoire.

Cette étape franchie, vous pouvez lancer votre programme Java en faisant ce qui suit :

java <nomFichierClassSansExtension>

Ce qui nous donne : java test. Et normalement, le résultat de votre programme Java
s'a�che sous vos yeux ébahis !

Attention : il ne faut pas mettre l'extension du �chier pour le lancer, mais il
faut la mettre pour le compiler.

Donc voilà : vous avez compilé et exécuté un programme Java en ligne de commande. . .
Vous avez pu voir qu'il n'y a rien de vraiment compliqué et, qui sait, vous en aurez
peut-être besoin un jour.

12. Ou encore touche Windows + R.

21

CHAPITRE 1. INSTALLER LES OUTILS DE DÉVELOPPEMENT

En résumé

� La JVM est le c÷ur de Java.
� Elle fait fonctionner vos programmes Java, précompilés en byte code.
� Les �chiers contenant le code source de vos programmes Java ont l'extension .java.
� Les �chiers précompilés correspondant à vos codes source Java ont l'extension .class.
� Le byte code est un code intermédiaire entre celui de votre programme et celui que
votre machine peut comprendre.

� Un programme Java, codé sous Windows, peut être précompilé sous Mac et en�n
exécuté sous Linux.

� Votre machine ne peut pas comprendre le byte code, elle a besoin de la JVM.
� Tous les programmes Java sont composés d'au moins une classe.
� Le point de départ de tout programme Java est la méthode public static void

main(String[] args).
� On peut a�cher des messages dans la console grâce à ces instructions :
� System.out.println, qui a�che un message avec un saut de ligne à la �n ;
� System.out.print, qui a�che un message sans saut de ligne.

22

