Polynômes

RÉPARTITION DES EXERCICES

Opérations sur les polynômes	1.09
Autour des racines $1.10 \rightarrow 1$	1.24
Division euclidienne	1.33
Factorisation des polynômes	1.39

I. ÉNONCÉS DES EXERCICES

- **1.01** Montrer que $P = X^6 12X^5 + 60X^4 160X^3 + 240X^2 192X + 64$ est le carré d'un polynôme à déterminer.
- $\begin{array}{c} \textbf{1.03} & \text{On d\'efinit, par r\'ecurrence, une suite de polynômes } (P_n)_{n\in\mathbb{N}} \text{ par :} \\ & P_0=1; P_1=X, \text{ et } \forall \, n\geq 1, P_{n+1}=2XP_n-P_{n-1} \\ & \text{Montrer que } \forall \, n\in\mathbb{N}, \forall \, x\in\mathbb{R}, P_n(\cos x)=\cos nx. \end{array}$
- **1.04** Soit $P \in \mathbb{K}[X]$, de fonction polynomiale associée périodique. Montrer que $\deg P \leq 0$.
- **1.05** Soit $P \in \mathbb{C}[X]$. Montrer que $P \circ P X$ est divisible par P X. [Si $P = \sum a_k X^k$, alors pour tout polynôme $Q, P \circ Q$ est le polynôme $\sum a_k Q^k$.]
- $\boxed{\textbf{1.07}} \ \text{Trouver les } P \in \mathbb{K}[X] \ \text{tels que } P(X^2) = (X^2+1)P(X).$

1.08 Résoudre $P'^2 = 4P$, d'inconnue $P \in \mathbb{K}[X]$.

 \Diamond

1.09 Montrer que pour tout $n \in \mathbb{N}$, il existe un unique $P_n \in \mathbb{R}[X]$ tel que $P_n - P'_n = X^n$. Exprimer les coefficients de P_n à l'aide de factorielles.

 \Diamond

1.10 Déterminer $P \in \mathbb{C}_3[X]$, tel que : $P(j)=j^2, P(j^2)=j, P'(j)=j, P'(j^2)=j^2.$

 \Diamond

- **1.11** Montrer que, pour tout $n \in \mathbb{N}, n \ge 2$, $\sum_{k=0}^{n} \frac{X^k}{k!}$ n'a pas de racine multiple.
- Pour quelles valeurs de n le polynôme $P_n = (X+1)^n X^n 1$ est-il divisible par $X^2 + X + 1$? Même question avec $Q_n = (1+X^4)^n X^4$.

 \Diamond

1.13 Soit P un polynôme de $\mathbb{R}[X]$ de fonction polynomiale associée à valeurs positives ou nulles sur \mathbb{R} . Montrer alors la proposition suivante :

$$\exists (Q, R) \in (\mathbb{R}[X])^2, P = Q^2 + R^2$$
 (1)

 \Diamond

Montrer que pour tout n, le polynôme $(X^2+X+1)^2$ divise le polynôme $Q_n=(X+1)^{6n+1}-X^{6n+1}-1$.

 \Diamond

1.15 Trouver a, b, c pour que $X^{2n} + aX^{n+1} + bX^n + cX^{n-1} + 1$ soit divisible par $(X-1)^3$.

 \Diamond

Soit $n \in \mathbb{N}^*$. Montrer que $Z_n = nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n$ est divisible par $(X-1)^3$.

 \Diamond

- **1.17** Soit le polynôme $R = X^3 + X + 1$.
 - $\mathbf{1}^{\circ}$) Montrer que R admet trois racines distinctes a,b et c dans \mathbb{C} .
 - **2°**) Montrer que a, b, c, -a, -b et -c sont six complexes distincts.
 - **3**°) Si $P \in \mathbb{C}[X]$, on admet l'existence et l'unicité d'un polynôme Q tel que : $Q(X^2) = P(X)P(-X)$. Trouver un polynôme de degré 3 ayant pour racines a^2, b^2 et c^2 .

 \Diamond

1.18 Soit $P \in \mathbb{C}[X]$, non nul, tel que $P(X^2) = -P(X)P(X+1)$. Montrer que si a est racine de P alors a^2 l'est aussi. En déduire que ou bien a=0 ou bien a est racine de l'unité.

 \Diamond

1.19 Trouver les polynômes $P \in \mathbb{C}[X]$ tels que $P(X^2) = P(X)P(X+1)$.

 \Diamond

1.20 Soit P un polynôme de degré n+1 de $\mathbb{R}[X]$ possédant n+1 racines réelles distinctes. Vérifier que P' possède exactement n racines réelles distinctes. En déduire que les racines de P^2+1 sont toutes simples dans \mathbb{C} . Montrer de façon générale que pour tout $\alpha \in \mathbb{R}^*$, les racines de $P^2+\alpha^2$ dans \mathbb{C} sont toutes simples.

 \Diamond

1.21 Soit $P \in \mathbb{C}[X]$, non nul et $n = \deg P$. Montrer que la suite des sommes des racines de $P, P', \dots, P^{(n-1)}$ est une progression arithmétique.

 \Diamond

1.22 On définit une suite (P_n) de polynômes par :

$$P_0 = 2, P_1 = X \text{ et } \forall n \in \mathbb{N}, P_{n+2} = XP_{n+1} - P_n.$$

- $\mathbf{1}^{\circ}$) Si $n \geq 1$, montrer que P_n est un polynôme unitaire de degré n.
- **2**°) Montrer que pour tout $z \in \mathbb{C}^*$: $P_n(z + \frac{1}{z}) = z^n + \frac{1}{z^n}$.
- 3°) Déterminer les racines du polynôme P_n .

 \Diamond

1.23 Déterminer l'unique $P \in \mathbb{R}_3[X]$ tel que $(X-1)^2$ divise P-1 et $(X+1)^2$ divise P+1.

 \Diamond

- 1.24 On désire déterminer dans $\mathbb{C}[X]$ tous les polynômes divisibles par leur polynôme dérivé.
 - ${f 1}^{\circ}$) Montrer que si un tel polynôme P non nul existe alors, en notant n son degré, il existe $a\in\mathbb{C}$ tel que : nP=(X-a)P'. Trouver alors une relation entre $P^{(n-1)},P^{(n)}$ et a.
 - 2°) En déduire les polynômes solutions.

 \Diamond

1.25 Déterminer a pour que $P = X^4 - X + a$ et $Q = X^2 - aX + 1$ aient deux racines communes.

 \Diamond

1.26 Trouver α et β pour que X^3-2X+1 divise $X^5+X^4+\alpha X^3+\beta X^2+5X-2$.

 \Diamond

1.27 Soient $P \in \mathbb{K}[X]$ et $(a,b) \in \mathbb{K}^2$. Déterminer en fonction de P(a) et de P(b) (et le cas échéant de P'(a)), le reste de la division euclidienne de P par (X-a)(X-b).

 \Diamond

1.28 Déterminer le reste de la division euclidienne de A par B pour : $A = (X \sin \theta + \cos \theta)^n$ et $B = X^2 + 1$,

puis pour $A=X^{2n}-2X^n\cos n\theta+1$ et $B=X^2-2X\cos \theta+1$.

 \Diamond

1.29 Déterminer le quotient et le reste de la division euclidienne de A par B pour : $A = X^q$ et B = X - 1; $A = X^{mq}$ et $B = X^m - 1$; $A = X^n - 1$ et $B = X^m - 1$.

(m, n, q) étant trois entiers non nuls avec $n \ge m$

 \Diamond

1.30 Trouver le reste de la division euclidienne de $(X \sin \theta + \cos \theta)^n$ par $(X^2 + 1)^2$.

 \Diamond

1.31 Déterminer les polynômes du troisième degré à coefficients réels divisibles par X-1, ayant même reste dans les divisions euclidiennes par X-2, X-3, X-4.

 \Diamond

Montrer que pour tout $n \ge 2$, $P_n = X^n \sin \alpha - X \sin n\alpha + \sin(n-1)\alpha$ est divisible par $A = X^2 - 2X \cos \alpha + 1$.

 \Diamond

1.33 1°) Soit $A = \begin{pmatrix} 5 & -4 \\ 4 & -3 \end{pmatrix}$. Calculer $(A - I_2)^2$.

 2°) Si $n \in \mathbb{N}$, écrire la division euclidienne de X^n par $(X-1)^2$. Déterminer le reste de cette division. En déduire l'expression des coefficients de la matrice A^n .

 \Diamond

1.34 Factoriser $P = X^4 - 9X^3 + 30X^2 - 44X + 24$.

 \Diamond

1.35 Factoriser dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$, $P = X^4 + 2$.

 \Diamond

1.36 Factoriser dans $\mathbb{R}[X]: X^4 + 4$; $X^6 + 27$; $X^8 + X^4 + 1$.

 \Diamond

1.37 Factoriser dans $\mathbb{R}[X]: P = \cos 3a + X \sin 3a - (\cos a + X \sin a)^3$, où $a \in \mathbb{R}$

 \Diamond

1.38 Factoriser dans $\mathbb{R}[X]$, $Q = X^{2n} + X^n + 1$.

 \Diamond

- **1.39** 1°) Déterminer algébriquement les racines carrées de $\frac{i+\sqrt{3}}{2}$ et $\frac{i-\sqrt{3}}{2}$.
 - **2**°) Diviser $X^6 i$ par $X^2 + i$. En déduire la factorisation dans $\mathbb{C}[X]$ du polynôme $X^6 i$, en utilisant les résultats de la première question.

 ${\bf 3}^\circ$) Factoriser X^6-i en résolvant $x^6=i$ dans $\mathbb C.$ En déduire $\cos \frac{\pi}{12}$

II. INDICATIONS

- **1.01.** À part poser $Q=aX^3+bX^2+cX+d$, développer Q^2 et identifier à P, que faire d'autre ?
- **1.02.** On procèdera par récurrence sur n.
- **1.03.** On pensera aux formules de trigonométrie usuelles.
- **1.04.** On posera Q(X) = P(X) P(0) et on vérifiera qu'il a une infinité re racines.
- **1.05.** Ecrire $P \circ P X = P \circ P P + P X$ et penser aux identités remarquables.
- 1.06. à 1.08. Ce sont des histoires de degré.
- **1.10.** On rappelle que $j = e^{2i\pi/3}$.
- **1.11.** Dériver le polynôme en présence et remarquer!
- **1.12.** Les racines de $1 + X + X^2$ sont j et j^2 .
- **1.13.** On montrera d'abord que nécessairement $\deg P$ est pair, que P est de coefficient dominant positif. Puis on montrera que (1) est vraie pour $\deg P=2$, et ensuite que pour tous polynômes réels U,V,Q_1,R_1 :

$$(U^2 + V^2)(Q_1^2 + R_1^2) = (UQ_1 + VR_1)^2 + (UR_1 - VQ_1)^2.$$

On en déduira enfin l'égalité (1).

- **1.14.** Montrer que j est racine double de Q_n .
- **1.19.** C'est un peu la suite de l'exercice précédent!
- **1.20.** C'est un jeu de Rolle.
- **1.21.** Il suffit de calculer les coefficients des deux termes de plus hauts degrés des dérivées de *P*.
- **1.22.** On fera des récurrences «fortes».
- **1.23.** On connait des racines de P'.
- **1.24.** Dériver redériver et redériver encore la relation entre P et P'.
- **1.26.** Faire le calcul explicite de la division.
- **1.27.** Le reste appartient à $\mathbb{R}_1[X]$.
- **1.28.** En substituant à X la valeur i on reconnaît la formule de de Moivre.
- **1.29.** $X^q = X^q 1 + 1!$
- **1.30.** Si R est le reste de cette division euclidienne, on effectuera sa propre division euclidienne par X^2+1 et on remplacera. Utiliser aussi l'exercice **1.28.**
- **1.31.** Remarquer que P est de la forme $(X-1)(aX^2+bX+c)$ est un bon démarrage.
- **1.34.** Trouver une racine «évidente» . . . d'ordre assez grand pour que le reste soit banal.
- **1.35.** et **1.36.** Penser aux identités remarquables.
- **1.37.** Penser à nouveau à de Moivre.
- **1.38.** On rappelle (encore et encore) que j et j^2 sont racines de $X^2 + X + 1$.

III. CORRIGÉS DÉTAILLÉS DES EXERCICES

Corrigé 1.01

On écrit qu'il doit exister $(a,b,c,d)\in\mathbb{R}^4$, tel que l'on ait $P=Q^2$, avec $Q=aX^3+bX^2+cX+d$.

Si Q est une solution, -Q est aussi solution et on peut supposer $a \geq 0$. On développe le carré et on identifie les coefficients :

 $a^2=1$ donne a=1, 2ab=-6 donne b=-6, $b^2+2ac=60$ donne c=12, etc. On trouve ainsi deux solutions : $Q=X^3-6X^2+12X-8$ et -Q.

Corrigé 1.02

Posons
$$P_n = \prod_{k=0}^n (1 + X^{2^k})$$
, alors $P_0 = 1 + X$, et
$$P_1 = (1 + X)(1 + X^2) = 1 + X + X^2 + X^3$$

Supposons que pour un certain n fixé ≥ 1 , on ait $P_n = 1 + X + X^2 + \dots + X^{2^{n+1}-1}$. Alors :

$$\begin{split} P_{n+1} &= \prod_{k=0}^{n+1} (1+X^{2^k}) = (1+X^{2^{n+1}}) \prod_{k=0}^{n} (1+X^{2^k}) \\ &= (1+X^{2^{n+1}}) (1+X+X^2+\dots+X^{2^{n+1}-1}) = 1+X+X^2+\dots+X^{2^{n+2}-1} \end{split}$$

car les «nouveaux» termes viennent se ranger juste après les «anciens» et on a bien la formule au rang n+1. On conclut par le principe de récurrence.

Corrigé 1.03

Les conditions de l'énoncé définissent clairement une suite de polynômes, et on voit facilement, par récurrence, que P_n est de degré n, et de coefficient dominant 2^{n-1} pour tout $n \ge 1$.

On a:
$$P_0(\cos x) = 1 = \cos(0x), P_1(\cos x) = \cos x.$$

Supposons alors la propriété vérifiée **jusqu'à** un certain ordre $n \ge 1$. On a donc :

$$\forall x \in \mathbb{R}, P_{n+1}(\cos x) = 2\cos x \cdot P_n(\cos x) - P_{n-1}(\cos x)$$

$$= 2\cos x \cos(nx) - \cos(n-1)x$$

$$= \cos(n+1)x + \cos(n-1)x - \cos(n-1)x = \cos(n+1)x$$

Ainsi la propriété est vraie **jusqu'au** rang n+1 et on conclut par le principe de récurrence fort. On vient donc de montrer que $\cos nx$ peut s'écrire comme polynôme en $\cos x$.

[Ces polynômes portent le nom de polynômes de Tchébychev de première espèce.]

Corrigé 1.04

Soit T une période de la fonction polynôme associée à $P \in \mathbb{K}[X]$. On a pour tout $x \in \mathbb{K}$, P(x+T) = P(x), d'où, par une récurrence immédiate : $\forall n \in \mathbb{N}, P(nT) = P(0)$.

En posant Q(X) = P(X) - P(0), on a donc : $\forall n \in \mathbb{N}, Q(nT) = 0$.

Or un polynôme qui admet une infinité de racines est nul et par conséquent :

$$Q = 0$$
, i.e. : $\forall x \in \mathbb{K}, P(x) = P(0)$.

et P est bien un polynôme constant.

Corrigé 1.05

Notons
$$P = \sum_{k=0}^{n} a_k X^k$$
, alors $P \circ P = \sum_{k=0}^{n} a_k P^k$ et :

$$P \circ P - X = P \circ P - P + P - X = \sum_{k=0}^{n} a_k (P^k - X^k) + P - X$$
$$= \sum_{k=1}^{n} a_k (P^k - X^k) + P - X$$

Or on a l'identité : $P^k - X^k = (P - X)(P^{k-1} + XP^{k-2} + \dots + X^{k-2}P + X^{k-1})$

Donc $P \circ P - X$ est divisible par P - X, et on peut même préciser le quotient Q:

$$Q = P^{k-1} + XP^{k-2} + \dots + X^{k-2}P + X^{k-1} + 1$$

Corrigé 1.06

a) On remarque que si l'un des deux polynômes est nul, l'autre l'est aussi. Donc P=Q=0 est solution.

Soit maintenant (P,Q) un couple solution (en supposant P et Q non nuls). Alors : $2 \deg Q = 1 + 2 \deg P$. Comme le degré d' un polynôme est un entier, cette égalité est impossible. Finalement, seul le couple (0,0) est solution.

b) P = 0 est solution triviale. Puis, on écrit (si P est non nul):

$$\deg P \circ P = (\deg P)^2 = \deg P$$

Donc $\deg P=0$, ou $\deg P=1$. On pose P=aX+b et $P\circ P=P$ donne :

$$a(aX + b) + b = aX + b$$
, d'où $\begin{bmatrix} a^2 = a \text{ et } ab = 0 \end{bmatrix}$

Il reste P = X ou $P = b, b \in \mathbb{R}$.

Corrigé 1.07

Le polynôme nul est évidemment le seul polynôme constant solution.

Si P est solution telle que $\deg P \ge 1$, on a nécessairement :

$$2 \operatorname{deg} P = 2 + \operatorname{deg} P$$
, donc $\operatorname{deg} P = 2$

On écrit $P = aX^2 + bX + c$ et on identifie. Il reste b = 0 et c = -a. Finalement, les solutions sont les polynômes de la forme $P = \alpha(X^2 - 1)$, avec $\alpha \in \mathbb{R}$.

Corrigé 1.08

Le polynôme nul est évidemment le seul polynôme constant solution.

Si P est solution telle que $\deg P \ge 1$, on a nécessairement :

$$2(\deg P - 1) = \deg P$$
, donc $\deg P = 2$

On écrit $P = aX^2 + bX + c$ et on identifie. Nécessairement a = 1 et $c = \frac{b^2}{4}$. Il

reste pour solution P=0 et $P=X^2+bX+\frac{b^2}{4}=\left(X+\frac{b}{2}\right)^2$, où $b\in\mathbb{R}$.

Corrigé 1.09

On remarque que P_n est nécessairement de degré n. On écrit alors :

 $P_n = a_n X^n + a_{n-1} X^{n-1} + \dots + a_1 X + a_0; P'_n = n a_n X^{n-1} + \dots + 2a_2 X + a_1$

L'égalité de l'énoncé entraîne par identification, degré par degré :

$$a_n = 1, a_{n-1} - na_n = 0, a_{n-2} - (n-1)a_{n-1} = 0, \dots, a_0 - 1.a_1 = 0$$

On trouve donc : $a_{n-1} = n, a_{n-2} = n(n-1), \dots, a_0 = n!$, soit :

$$P = X^{n} + nX^{n-1} + n(n-1)X^{n-2} + \dots + n! = \sum_{k=0}^{n} \frac{n!}{k!} X^{k}$$

Corrigé 1.10

Le polynôme P'(X)-X est de degré au plus 2 et s'annule en j et j^2 , il existe donc $a\in\mathbb{C}$, tel que : $P'(X)-X=a(1+X+X^2)$.

On en déduit qu'il existe $(a,b)\in\mathbb{C}^2$ tel que :

$$P = a(X + \frac{X^2}{2} + \frac{X^3}{3}) + \frac{X^2}{2} + b.$$

Il reste à exploiter $P(j)=j^2$ et $P(j^2)=j$ qui fournissent : a=-1 et $b=-\frac{2}{3}$.

Finalement :
$$P = -\frac{X^3}{3} - X - \frac{2}{3}$$

Corrigé 1.11

Posons $P = \sum_{k=0}^{n} \frac{X^k}{k!}$ et supposons que P admette une racine multiple a.

On a
$$P(a) = P'(a) = 0$$
. Or on remarque que $P'(x) = \sum_{k=1}^{n} \frac{x^{k-1}}{(k-1)!} = P(x) - \frac{x^n}{n!}$

On en déduit : $\frac{a^n}{n!} = 0$, c'est-à-dire a = 0.

Or 0 n'est évidemment pas une racine (même simple) de P, d'où la contradiction.

Corrigé 1.12

 $\mathbf{1}^{\circ}$) Les racines de $X^2 + X + 1$ sont j et $j^2 = \overline{\jmath}$.

Le polynôme P_n est divisible par $X^2+X+1=(X-j)(X-\overline{\jmath})$ si et seulement si $P_n(j)=P_n(\overline{\jmath})=0$. Comme P_n est un polynôme réel, j est racine de P_n si et seulement si $\overline{\jmath}$ est racine de P_n . Bref :

 P_n est divisible par $X^2 + X + 1 \iff P_n(j) = 0 \iff (j+1)^n - j^n - 1 = 0$. Comme $-j^2 = j+1$, ceci s'écrit :

$$(-1)^n j^{2n} - j^n - 1 = 0.$$

 $n\mapsto (-1)^n$ est périodique de période $2,\,n\mapsto j^n$ et $n\mapsto j^{2n}$ sont périodiques de période 3. Nous allons donc étudier l'égalité modulo 6.

Posons
$$u_n = (-1)^n j^{2n} - j^n - 1$$
.
$$\begin{cases}
n = 6p & \implies u_n = -1 \\
n = 6p + 1 & \implies u_n = 0 \\
n = 6p + 2 & \implies u_n = 2j \\
n = 6p + 3 & \implies u_n = 2j \\
n = 6p + 4 & \implies u_n = 2j^2 \\
n = 6p + 5 & \implies u_n = 0
\end{cases}$$

En conclusion P_n est divisible par $X^2 + X + 1$ si et seulement si n est de la forme 6p + 1 ou 6p + 5, pour $p \in \mathbb{N}$.

2°) De même :

$$Q_n$$
 est divisible par $X^2+X+1 \Longleftrightarrow Q_n(j)=0 \Longleftrightarrow (1+j^4)^n-j^4=0.$ $\iff (-j^2)^n=j$