



Python

Introduction au calcul numérique

En téléchargement scripts

Les éléments à télécharger sont disponibles à l'adresse suivante :

http://www.editions-eni.fr

Saisissez la référence ENI de l'ouvrage **RIPYTCN** dans la zone de recherche et validez. Cliquez sur le titre du livre puis sur le bouton de téléchargement.

Avant-propos

Chapitre 1 Nombres, opérations et fonctions dans Python

1.	Nor	mbres et opérations	17
	1.1	Entiers et décimaux	17
	1.2	Les variables numériques	18
	1.3	L'opérateur d'affectation =	18
	1.4	Les opérations disponibles dans Python	19
	1.5		
	1.6	Les opérateurs de comparaison	20
	1.7	Le module « fractions »	
	1.8	Deux autres instructions du module « fractions »	22
2.	Rep	orésentation des nombres	23
	2.1	Historique	23
	2.2	La représentation binaire des entiers naturels	24
	2.3	La représentation binaire des entiers relatifs	25
	2.4	Les nombres dyadiques	25
	2.5	La représentation des nombres à virgule	
		à l'aide des « flottants »	26
	2.6	La précision des calculs	27
3.	Fon	actions disponibles dans Python	29
		Les fonctions usuelles	
	3.2	Les fonctions numériques du module « math »	30
	3.3	Comment définir ses propres fonctions ?	31

		Définir une fonction par une suite d'actions	
4			
4.		cursivité des fonctions	
		Les factorielles	
	4.2	Une application de la récursivité : les tours de Hanoï	.3/
Chap Suite		nombres réels	
1.	Suite	es et racines carrées	. 41
		La méthode d'Archytas de Tarente	
		La méthode de Héron d'Alexandrie	
	1.3	Le calcul d'une racine cubique	. 45
2.	Com	ment définir une suite ?	. 47
		Définition	
		Suites définies par $u_n = f(n)$	
		Suites récurrentes	
3.	Qua	nd n devient de plus en plus grand	. 51
		Une suite peut être convergente	
		Une suite peut ne pas avoir de limite	
4.	Une	suite célèbre : la suite de Fibonacci	. 55
		Historique	
	4.2	Le problème des lapins	. 56
		L'étude du rapport de deux termes successifs de la suite	
	4.4	L'étude du nombre $ r_n - \varphi $. 59
	4.5	La formule de Binet	. 59
5.	Suite	es définies par des sommes	. 61
		Historique	
	5.2	La somme des carrés et des cubes des entiers naturels de 1 à n	. 62
	5.3	Les séries géométriques	. 63
	5.4	La série de Swineshead	. 64
	5.5	La série harmonique et la série harmonique alternée	. 65

		Le problème de Bâle	
Chap Fonc		3 n exponentielle et fonctions logarithmes	
1.	La f 1.1 1.2 1.3 1.4 1.5 1.6	Définition de la fonction exponentielle par Euler Dérivée de la fonction $x \to \exp(x)$. 69 . 70 . 71 . 72
2.	Les 2.1 2.2 2.3 2.4	Logarithme décimal d'un nombre strictement positif	. 75 . 75 . 76 . 76
3.	3.1	gorithme de Briggs	. 79
4.	4.14.24.3	Définition et calcul de $ln(x)$ pour $x \ge 0$. 83 . 85 . 86

Chapitre 4 Dérivation numérique et équations différentielles

Dérivée d'un	e fonction numérique	89
1.2 Dérivée	s à droite et dérivées à gauche	90
1.3 Calculs	approchés de $f'_d(x)$ et de $f'_g(x)$	92
Calcul appro	ché de f'(x) et de f''(x)	95
	· · · · · · · · · · · · · · · · · · ·	
2.5 Calcul a	pproché de $f''(x)$	98
Qu'est-ce qu	une équation différentielle ?	101
3.1 Historic	lue	101
3.2 Les équa	ations du type $y'=f(x)$	103
3.3 Les équa	ations du type $y'=ay$	103
•		
3.6 La nota	tion différentielle de Leibniz	106
La méthode	d'Euler	109
4.1 Principe	de la méthode d'Euler	109
4.2 Un prog	gramme pour calculer $y(x)$	110
4.3 Influence	ce du choix de n sur la précision des résultats	112
4.4 Constru	action d'une fonction $Euler(x_0, y_0, x, n) \dots$	113
4.5 Un cas 1	particulier : l'équation différentielle $y'=y$	114
Les méthode	s de Runge-Kutta	117
5.1 Historic	rue	117
5.2 Cas d'un	ne équation différentielle du premier ordre	117
5.3 Cas d'un	ne équation différentielle du second ordre	120
	1.1 Historica 1.2 Dérivées 1.3 Calcula 1.4 Calcula Calcul appro 2.1 Adminis 2.2 Calcula 2.3 Applica 2.4 Approxi 2.5 Calcula Culest-ce qui 3.1 Historica 3.2 Les équa 3.4 Les équa 3.5 Les équa 3.6 La nota La méthode a 4.1 Principe 4.2 Un pros 4.3 Influenc 4.4 Constru 4.5 Un cas p Les méthode 5.1 Historica 5.2 Cas d'un	1.4 Calcul approché de f '(x) à l'aide de f' _g (x0) et de f' _d (x0). Calcul approché de f '(x) et de f "(x). 2.1 Administration par un polynôme. 2.2 Calcul d'une valeur approchée de f '(x). 2.3 Application à la fonction exponentielle. 2.4 Approximation de f(x) au voisinage de x0. 2.5 Calcul approché de f "(x). Qu'est-ce qu'une équation différentielle?. 3.1 Historique. 3.2 Les équations du type y'=f(x). 3.3 Les équations du type y'=ay. 3.4 Les équations du type y'=ay+b. 3.5 Les équations linéaires du type ay'+by=z. 3.6 La notation différentielle de Leibniz. La méthode d'Euler. 4.1 Principe de la méthode d'Euler. 4.2 Un programme pour calculer y(x). 4.3 Influence du choix de n sur la précision des résultats. 4.4 Construction d'une fonction Euler(x ₀ ,y ₀ ,x _n). 4.5 Un cas particulier: l'équation différentielle y'=y. Les méthodes de Runge-Kutta. 5.1 Historique. 5.2 Cas d'une équation différentielle du premier ordre.

Chap Réso	tre 5 ution approchée des équations	
1.	La recherche d'une solution par dichotomie 1.1 Historique 1.2 Deux programmes	23
2.	La méthode des approximations successives 1 2.1 Historique 1 2.2 Étude d'un exemple 1 2.3 Deux programmes pour calculer r 1	.29 .30
3.	La méthode de Newton .1 3.1 Historique .1 3.2 Extension de la méthode .1 3.3 Représentation graphique de la méthode de Newton .1 3.4 Deux programmes .1	35 36 38
Chap	tre 6	
Chap Calc	tre 6 ul infinitésimal et intégration numérique	
Calc		42 42
Calc	Infinitésimal et intégration numérique Longueur d'un arc de courbe 1.1 Principe du calcul 1.2 Un programme de calcul	42 42 43 45 45 45 47

4.	Intégration approchée par la méthode des rectangles	155 156 157
5.	Intégration approchée par la méthode des trapèzes	l 61 l 62
6.	Intégration approchée par la méthode de Simpson16.1 Historique16.2 Méthode de Simpson16.3 Cas d'une intégrale avec une borne infinie1	165 165
7.	Intégration approchée par la méthode de Gauss17.1 Historique17.2 Principe de la méthode de Gauss17.3 Un programme de calcul17.4 Deux remarques1	169 169 170
Chap Nom	tre 7 bres complexes	
1.	Les nombres complexes dans Python	173 175 176 176 177

2.	Réso	olution dans C des équations du second degré	181
	2.1	Cas d'une équation à coefficients réels	181
	2.2	Cas d'une équation du second degré à coefficients complexes	182
3.	Les	suites de nombres complexes	185
	3.1	Suites récurrentes	185
	3.2	Partie réelle et partie imaginaire d'une suite complexe	185
	3.3	Convergence d'une suite	186
	3.4	Une suite géométrique	
	3.5	Représentation graphique d'une suite	189
4.	Ape	rçu sur les fonctions d'une variable complexe	193
	4.1		
	4.2	La fonction $z \rightarrow z + a$	193
	4.3	La fonction $z \rightarrow az$ avec $ a = 1$	
		La fonction $z \rightarrow az$ avec a réel	
		Les fonctions homographiques complexes	
	4.6	Les transformations homographiques du plan complexe	197
Chap	itre 8	3	
Élém	ents	s de statistiques	
1	Les	paramètres d'une série statistique	199
		Un exemple	
	1.2		
	1.3	Calcul de la médiane	
	1.4		
		de l'écart interquartile Q_3 - Q_1	202
	1.5	Calcul de la moyenne	203
	1.6	Calcul de la variance et de l'écart-type	203
2.	_		
	Cov	ariance et coefficient de corrélation	205
	Cov 2.1		
			205
	2.1 2.2	Historique	205 206

	3.	Ajus	stements linéaires et autres	. 209
		3.1	Historique	. 209
		3.2	Ajustement linéaire	. 209
		3.3	Ajustement par une exponentielle	. 211
		3.4	Ajustement par une fonction puissance	. 212
Ch	api	itre 9)	
			atoire et échantillonnage	
	1.	Fact	corielles et combinaisons	. 215
		1.1	Premières recherches	
		1.2	L'invention des factorielles	. 216
		1.3	Les combinaisons de n objets pris $p \ge p \dots$. 217
		1.4	Le calcul du nombre $\binom{n}{p}$. 218
	2.	Écha	antillonnage	. 221
		2.1	Historique	. 221
		2.2	Fabrication expérimentale d'un échantillon	. 221
		2.3	Un calcul direct	. 222
	3.	Écha	antillonnage et fréquences	. 225
		3.1	Fluctuations d'échantillonnage	. 225
		3.2	Intervalle de fluctuation de la fréquence d'un échantillon	. 226
		3.3	1 1	
			dans une population	
		3.4	Quelques remarques	. 229
Ch	api	itre 1	10	
	•		abilités	
	1.	Les	probabilités conditionnelles	. 231
			Une simulation pour conjecturer	
			Le calcul confirme la conjecture	
			Une formule pour définir une probabilité conditionnelle	

	1.4	Un exemple	235
2.	La f 2.1	ormule de Bayes	
	2.2	La formule de Bayes	
		Une première simulation	
	2.4	Une deuxième simulation	239
3.	L'es	pérance et l'écart-type d'une variable aléatoire discrète	243
		Variables aléatoires discrètes	
		Variables aléatoires et lois de probabilité	
	3.3	Espérance mathématique d'une variable aléatoire	
		Variance et écart-type d'une variable aléatoire X	
		Un programme pour calculer $E(X)$, $V(X)$ et (X)	
4.		oi binomiale	
	4.1	Expériences et schémas de Bernoulli	
	4.2	Étude d'un exemple	
	4.3 4.4	Une généralisation : la loi binomiale	
	4.4	Un programme pour calculer $P(X=k)$	
	4.6	Espérance et écart-type \dots	
5.		oi de Poisson	
Э.	5.1		
	5.2	Expression de la loi de Poisson	
	5.3	Exemples	
	5.4	Loi de Poisson et loi binomiale.	
6.		variables aléatoires continues	
0.	6.1		
	6.2	Qu'est-ce qu'une variable aléatoire continue ?	
	6.3	Comment définir une loi de probabilité continue ?	
	6.4		
7.	Lal	oi exponentielle	
<i>,</i> .		À quoi sert cette loi ?	
		Définition	

	7.3 Espérance et variance d'une loi exponentielle	
	7.4 Calcul de la probabilité $P(a < X < b)$	
	7.5 Application à la physique	
	7.6 Usure et vieillissement	264
8.	La loi normale	265
	8.1 Définition	265
	8.2 Loi normale réduite	
	8.3 Calcul de $P(X < a)$	
	8.4 Calcul inverse	
	8.5 Exemple d'utilisation de la loi normale	269
9.	Loi normale et jugements statistiques	271
	9.1 Intervalle de fluctuation d'une moyenne	271
	9.2 Intervalle de fluctuation d'une fréquence	272
	9.3 Intervalle de confiance d'une moyenne	
	9.4 Intervalle de confiance d'une fréquence	275
	oitre 11 nmétique et cryptographie	
1.	La division euclidienne des entiers	277
	1.1 Deux fonctions de Python	
	1.2 La division euclidienne des entiers relatifs	
2.	Les diviseurs d'un entier naturel	281
	2.1 Recherche des diviseurs d'un entier naturel	
	2.2 Somme des diviseurs propres d'un entier	
	2.3 Nombres parfaits	
	2.4 Nombres amicaux	
3.	Les nombres premiers	287
	3.1 Les nombres premiers sont en nombre infini	
	3.2 Le crible d'Ératosthène	
	3.3 Comment savoir si un entier donné est premier ?	
	3.4 Des listes de nombres premiers	

	3.5	La conjecture des nombres premiers jumeaux	. 290
	3.6	La conjecture de Goldbach	. 291
4.	Le P	PGCD de deux entiers	. 293
	4.1	L'algorithme d'Euclide	
	4.2	La méthode des divisions successives	
	4.3	La fonction pgcd dans Python	. 295
5.	Les	factorisations d'un entier naturel	. 297
	5.1	Décomposition en facteurs premiers	. 297
	5.2	Décomposition en facteurs premiers	• • •
	r 0	et recherche d'un PGCD	
	5.3	Une autre méthode de factorisation	
_		Méthode de Fermat	
6.		héorème de Bezout	
	6.1	Historique	
	6.2 6.3	Deux exemples	
	6.4	•	
7.		roduction aux équations diophantiennes	
/.	7.1	Historique	
	7.2	Un exemple d'équation diophantienne	
	7.3	Un autre exemple	
	7.4	Un programme pour résoudre l'équation $ax+by=c$	
	7.5	Une équation diophantienne du second degré	
8.	La c	congruence des entiers relatifs	. 317
		Le terme « modulo »	
	8.2	Calcul des restes modulo <i>n</i>	. 318
	8.3	Calculs modulo n et calculs dans l'anneau $\mathbb{Z}/n\mathbb{Z}$. 319
	8.4	Résolution de l'équation $ax+b=c$ dans l'anneau $\mathbb{Z}/n\mathbb{Z}$. 322
9.	Le c	ode secret de Jules César	. 323
	9.1	Historique	. 323
	9.2	Les instructions ord() et chr() de Python	. 323
	9.3	Un programme pour coder un texte	.324

	9.4	Un programme pour décoder un texte quand on connaît le décalage	325
	9.5	Décodage avec une analyse des fréquences des lettres	
		Un programme de décodage quand on ne connaît	020
		pas le décalage employé	326
10	. Le c	hiffre de Vigenère	
		Historique	
		Principe du chiffre de Vigenère	
		Un programme de chiffrement et de déchiffrement	
11	Les	codages affines	335
		Une convention	
	11.2	Un programme pour coder un texte	335
		Comment choisir les entiers a et b ?	
	11.4	Décodage d'un texte codé	
		par une fonction affine avec a et b connus	337
	11.5	Décodage d'un texte codé	220
	11 6	par une fonction affine avec a et b inconnus b Un programme général de décodage	
10			
12		hiffrement de Hill	
		Principe du chiffrement	
		Principe du déchiffrement	
		Un programme pour coder	
		Un programme pour décoder	
		6-1- P8 P01- 00000001	,,,,,,,,,
Chap		12 5 2x2 et matrices 3x3	
1.		rices carrées et applications linéaires	
	1.1		
		Une matrice représente une application linéaire	
	1.3	i ,	
	1.4	Image d'un vecteur par une matrice carrée 2x2 ou 3x3	353

2.	Opé	Frations sur les matrices	. 355
	2.1	Addition, soustraction et multiplication par un réel	. 355
	2.2	Multiplication des matrices carrées de taille 2	. 356
	2.3	Propriétés particulières de la multiplication des matrices	. 357
	2.4	Un programme pour multiplier des matrices 2x2	. 358
	2.5	Un programme pour multiplier des matrices 3x3	. 359
	2.6	Multiplication de deux matrices de tailles différentes	. 360
	2.7	Opérations avec des matrices carrées remarquables	. 361
3.	Dét	erminant d'une matrice carrée 2x2 ou 3x3	. 363
	3.1	Déterminant d'une matrice 2x2	. 363
	3.2	Déterminant d'une matrice 3x3	. 364
	3.3	Déterminant d'un système de vecteurs	. 366
4.	Inve	ersion des matrices carrées 2x2 et 3x3	. 367
	4.1	Qu'est-ce qu'une matrice inversible ?	. 367
	4.2	Inverse d'une matrice carrée 2x2	. 368
	4.3	Inverse d'une matrice carrée 3x3	
	4.4	Méthode du pivot	. 370
5.	Rés	olution d'un système linéaire d'équations	. 373
		Un exemple historique	
	5.2		. 374
	5.3	Un programme pour résoudre les systèmes	
		de deux équations à deux inconnues	. 375
	5.4	Un programme pour résoudre les systèmes	276
	5.5	de trois équations à trois inconnues	
6.		ssances d'une matrice 2x2 ou 3x3	
	6.1 6.2	Puissance d'une matrice 2x2	
		Puissance d'une matrice 3x3	
7		Cas des matrices diagonales	
7.		gonalisation d'une matrice 2x2	
		Les matrices diagonisables	
	1.2	Étude d'un exemple	. 383

		Diagonalisation d'une matrice 2x2	
8.	8.1 8.2	rrices et suites récurrentes Rappel : les nombres de Fibonacci Calcul des nombres de Fibonacci à l'aide d'une matrice 2x2 Les relations de Binet	389 389
Chapi Géor		13 rie analytique	
1.	1.1 1.2 1.3		393 394 397
2.	2.12.22.3	Ation cartésienne d'une droite dans le plan Historique Recherche de l'équation cartésienne d'une droite dont on connaît deux points Recherche de l'équation cartésienne d'une droite dont on connaît un vecteur directeur et un point	401 401 403
	2.5 2.6	Intersection de deux droites	405 406
3.		Représentation paramétrique d'une droite	409 409 410 411

4.	4.1 4.2 4.3 4.4	Détermination de l'équation paramétrique d'un plan	415 416 417 418
5.		ation cartésienne d'un plan	423
		et par un vecteur normal	
	5.3		
		Intersection d'une droite et d'un plan	
		Distance d'un point à un plan	
Anne	exes	6	
1.	Bibl	iographie	433
2.	Con	nment utiliser les scripts du livre ?	437
Note	S		439
Inc	lev		<i>ΔΔ</i> 1

Chapitre 2 Suites de nombres réels

1. Suites et racines carrées

L'idée de répéter un calcul en changeant les nombres utilisés à chaque étape est très ancienne puisqu'on en trouve la trace à Babylone, 1800 ans avant J.-C. En Grèce, on a souvent eu recours aux suites pour calculer des racines carrées.

1.1 La méthode d'Archytas de Tarente

Archytas de Tarente (vers 435 av. J.-C.; 347 av. J.-C) était un disciple de Pythagore. Ses travaux ont concerné la notion de moyenne. Étant donnés deux nombres a et b, leur moyenne arithmétique m est égale à $\frac{a+b}{2}$, leur moyenne géométrique g est définie par $g^2 = ab$ et leur moyenne harmonique g est définie par $g^2 = ab$ et leur moyenne harmonique g0 est définie par g1. On démontre que g2 est définie par g3 et leur moyenne harmonique g4 est définie par g5 est définie par g6 est définie par g7 est definie par g8 est définie par g9 e

Par exemple, pour trouver une valeur approchée de $\sqrt{3}$, il commence par écrire $3=2\times\frac{3}{2}$ puis, comme le montre le tableau suivant, il déroule ses calculs :

Étape n°	x	у	Moyenne arithmétique de x et de y	Moyenne harmonique de x et de y
1	2	$\frac{3}{2}$	$\frac{7}{4}$	<u>12</u> 7
2	$\frac{7}{4}$	<u>12</u> 7	97 56	168 97
3	97 56	168 97	18817 10864	32592 18817

Avec les notations actuelles, on peut écrire $\frac{18817}{10864}$ =1,73205081... et

 $\frac{32592}{18817}$ =1,732050805..... Le nombre $\sqrt{3}$ est connu avec une erreur qui porte sur

la 9^e décimale seulement. On peut généraliser la méthode d'Archytas de Tarente à un nombre réel positif A quelconque en utilisant le programme qui suit :

```
# Calcul d'une racine carrée avec la méthode d'Archytas de Tarente
A=eval(input("Valeur de A : "))
x,y=2,A/2
for i in range(1,6):
    m=(x+y)/2
    h=x*y/m
    print("x=",x," et y=",y)
    x,y=m,h
```

On a choisi de faire le calcul en cinq étapes car l'algorithme est très performant.

Chapitre 2

Voici par exemple le calcul de $\sqrt{2}$:

1.2 La méthode de Héron d'Alexandrie

Au I^{er} siècle après J.-C., le mathématicien et ingénieur grec Héron d'Alexandrie (75-150) a exposé une méthode² très rapide et très simple pour calculer la racine carrée d'un nombre réel A positif. On choisit une valeur approchée quelconque u de \sqrt{A} et on calcule $v=\frac{1}{2}(u+\frac{A}{u})$. Il est facile de voir que \sqrt{A} est compris entre u et v. On recommence le calcul en remplaçant u par v et on continue ainsi jusqu'à atteindre la précision désirée. Ainsi, le tableau qui suit montre les cinq premières étapes du calcul de $\sqrt{5}$.

Étape n°	и	ν
1	3.0	2.333333333333333
2	2.3333333333333335	2.238095238095238
3	2.238095238095238	2.2360688956433634
4	2.2360688956433634	2.236067977499978
5	2.236067977499978	2.23606797749979

On peut généraliser la méthode de Héron d'Alexandrie à un nombre réel positif A quelconque avec ce programme :

```
# Calcul d'une racine carrée avec la méthode de Héron d'Alexandrie
A=eval(input("Valeur du nombre A ? "))
n=eval(input("Valeur de n ? "))
u=A/2
for i in range(1,n+1):
    v=(u+A/u)/2
    print(v)
    u=v
```

Pour calculer \sqrt{A} quand A est positif, on peut choisir un nombre positif quelconque comme première approximation de \sqrt{A} , y compris le nombre A lui-même. Calculons par exemple les 8 premières valeurs approchées de $\sqrt{10}$ avec ce programme :

```
from math import*
a=10
n=8
u=a
for i in range(1,n+1):
    v=(u+a/u)/2
    print(v)
    u=v
```

On obtient ces résultats :

```
3.659090909090909
3.196005081874647
3.16245562280389
3.162277665175675
3.162277660168379
3.162277660168379
3.162277660168379
3.162277660168379
```

Chapitre 2

Dès la cinquième approximation, on a obtenu 15 décimales exactes. On démontre que la suite des approximations de $\sqrt{10}$ est illimitée. Le développement décimal de $\sqrt{10}$ possède donc une infinité de décimales. En effet, $\sqrt{10}$ est un nombre irrationnel qui ne peut pas être représenté exactement par une fraction. C'est aussi un nombre algébrique qui vérifie l'équation $x^2 = 10$.

1.3 Le calcul d'une racine cubique

On peut généraliser la méthode de Héron et calculer la racine cubique d'un nombre positif a. Si x_{n-1} est une valeur approchée de cette racine, la valeur

approchée suivante x_n est donnée par le calcul $x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}^2} \right)$. Le pro-

gramme qui suit calcule des valeurs approchées successives u et v de $\sqrt[3]{a}$. Le calcul est arrêté quand $|v-u| < 10^{-6}$. Comme Python peut calculer $\sqrt[3]{a}$, on pourra comparer la valeur exacte à la valeur calculée.

```
# Calcul d'une racine cubique. Méthode de Héron d'Alexandrie
from math import*
a=eval(input("Valeur du nombre positif a ? "))
u=a/3
v=u/2+a/(2*u*u)
e=abs(u-v)
while e>0.000001:
    u=v/2+a/(2*v*v)
    e=abs(v-u)
    v=u
print("Valeur approchée de la racine cubique de ",a," =",v)
print("Valeur exacte selon Python = ", a**(1/3))
```

Voici le résultat obtenu pour a=100:

```
Valeur du nombre positif a ? 100

Valeur approchée de la racine cubique de 100 = 4.641589088997662

Valeur exacte selon Python = 4.641588833612778
```