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Un ouvrage de référence pour le développeur web
Vue.js est un framework JavaScript orienté front-end qui mérite considération à plusieurs égards. Il est réactif, performant, versatile, facilement 
testable, maintenable et sa courbe d’apprentissage est réellement rapide.
L’écriture globale est idéalement structurée et son écosystème aide à créer, organiser et maintenir vos applications clientes.
Ce framework peut se suffire à lui-même pour développer des applications complexes en ayant recours à de simples composants, des mixins 
ou des plug-ins. De plus, il s’accompagne d’un univers où de multiples outils sont disponibles pour aider au développement : des extensions, 
des plug-ins et des librairies complètes pour vous faire gagner en temps de réalisation, en qualité de code et également en performance.

Compléments web
Tous les exemples des programmes du livre sont en téléchargement sur notre site Internet : www.editions-eyrolles.com/dl/0067783.

À qui s’adresse cet ouvrage ? 
• �Aux développeurs et chefs de projet web qui souhaitent réaliser des applications web performantes.
• �À toutes les personnes qui souhaitent découvrir Vue.js et acquérir des connaissances certaines afin d’être autonomes  

dans le développement web autour de ce framework.

Brice Chaponneau est titulaire d’un Master IT dans le développement  
des applications réparties. Il a travaillé dans différents domaines dont la banque 
(Caisse d’Épargne, Société Générale, Edmond de Rothschild, Natixis), l’assurance 
(Monceau Assurance), les transports (SNCF) et le secteur industriel (ArcelorMittal).  
Brice a donc été développeur, lead technique, chef de projet MOE, Scrum Master  
et consultant. Il a majoritairement développé en JavaScript, .Net et via des frameworks  
divers. Il maîtrise les bases de données NoSQL comme Mongo DB et SGBDR  
(SQL Server, Oracle, Sybase).

Au sommaire  
Installer et utiliser Vue.js • Les outils préconisés et leur configuration • Les paradigmes fondamentaux de Vue.js • Les directives pour commander 
les éléments • Les directives personnalisées • Formater avec l’interpolation des filtres • Les composants • Les slots, un emplacement ré-
servé pour injecter du contenu • Le composant keep-alive pour garder l’état courant • Apporter de la dynamique visuelle avec les transitions  
• La réutilisabilité avec les mixins • Ajouter des fonctionnalités avec les plug-ins • Extension de composant • Le store, gestionnaire d’états  
• API • Le routage pour la navigation
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Avant-propos

Comment lire cet ouvrage ?
L’ouvrage est construit de manière incrémentale sur la compréhension et l’utilisation de Vue.js : 
de l’installation du cœur et des packages principaux de ce framework à la création d’un projet 
complet, en passant par l’ensemble de ses composantes, la préconisation d’outils et leur configu-
ration mais également des astuces d’écriture de code ou d’optimisation d’exécution.

Que contient ce livre ?
Pour appuyer les chapitres décrivant une composante majeure de Vue, des exercices seront 
proposés afin de bien en comprendre les rouages. Ils mèneront à un projet final. Il est donc 
conseillé de lire ce livre chapitre après chapitre.

Le premier chapitre est la mise en lumière de Vue. Le deuxième chapitre expose la multitude de 
possibilités offertes pour installer et/ou utiliser Vue et propose un panel d’outils, ainsi que leur 
configuration. Les chapitres suivants décortiquent les paradigmes du framework.

À qui s’adresse-t-il ?
Vue est écrit en JavaScript (JS) et ce livre n’a pas vocation à reprendre les bases de ce langage, ni 
les conventions ECMAScript − même si nous y trouverons quelques rappels et comparaisons − 
mais à disséquer ce framework. Il est donc nécessaire que le lecteur connaisse les bases de JS, 
du langage HTML et des styles CSS. Notons cependant que les exemples vont à l’essentiel afin 
d’exposer un sujet précis et ne veulent en aucun cas perdre le lecteur dans des propositions 
surchargées.
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Code source en téléchargement
Tous les codes sources sont également disponibles sur l’espace de téléchargement dédié sur le 
site des éditions Eyrolles (editions-eyrolles.com/dl/0067783) afin de permettre au lecteur de se 
focaliser sur la compréhension et les tests plutôt que sur la réécriture.

Un fichier nommé Readme.html à la racine de ce dossier de téléchargement apporte une explica-
tion simple et détaillée pour pouvoir lancer les serveurs et apprécier le code ainsi que le rendu.
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Introduction

Vue (prononcé « view ») est un framework évolutif JavaScript front-end et open source qui permet 
de construire des interfaces web utilisant des liaisons de données MVVM (Modèle-Vue-Vue-
Modèle) très simplement, le tout architecturé autour du composant et surtout de la réutilisabilité.

Il est possible de réaliser des composants unitaires, des applications SPA (Single Page 
Application), SSR (Server Side Rendering), Mobile… De plus, un projet Vue peut être couplé 
avec d’autres outils ou bibliothèques tierces.

Vue est disponible sur le site officiel du framework à l’adresse suivante : https://vuejs.org/.

Historique de Vue.js
Après avoir travaillé chez Google sur divers projets avec leur framework AngularJS, Evan You 
a implémenté un framework plus léger, organisé et plus modulable. La première version de Vue 
a été déposée sur GitHub en février 2014 et son code couvert par des tests unitaires sous Karma 
(bibliothèque JavaScript de tests unitaires).

Aujourd’hui, ce projet est maintenu par divers auteurs à l’international tant pour le noyau que 
pour les outils et modules complémentaires.

Comparatif des frameworks JavaScript actuels
À ce jour, il existe une multitude de bibliothèques JavaScript telles que JQuery, Angular, Ember 
et React pour ne citer que les plus populaires. Voici quelques comparatifs que nous pouvons 
apprécier concernant l’évolution de l’utilisation et de la cote de popularité de Vue.js et ce, malgré 
sa jeunesse somme toute relative.

La figure I-1 présente les statistiques NPM (graphique) et GitHub (tableau) des frameworks JS sur 
2 ans, avec comme métriques la popularité et la tendance d’utilisation avec les curseurs suivants :

•	 stars : popularité des utilisateurs ;

•	 forks : nombre de copies des référentiels faites par les utilisateurs ;

•	 issues : nombre d’anomalies remontées par les utilisateurs.
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On observe donc qu’à ce jour, React.js est en première position et Vue.js en deuxième position. 
Il faut garder en mémoire que React a eu la promotion de Facebook et que ce framework est né 
1 an avant Vue. Evan You a su promouvoir son projet, le rendre fi able et populaire.

Figure I-1 – Comparatif des frameworks JS
(Source : https://www.npmtrends.com)

Cet autre site donne d’abord les statistiques de popularité (onglet Popular) et dans un second 
temps la tendance d’utilisation (onglet Trending) des frameworks actuels (fi gures I-2 et I-3).
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Figure I-2 – Popularité des frameworks JS sur 1 an
(Source : https://bestof.js.org)

Figure I-3 – Tendance de l’utilisation des frameworks JS sur 1 an
(Source : https://bestof.js.org)

Pour fi nir, observons un benchmark lancé sur un MacBook Pro 15 (2,5 GHz i7, 16 Go RAM, 
OS X 10.12.5, Chrome 58.0.3029.110, 64-bit) dans lequel nous avons pour le premier tableau le 
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temps d’exécution (exprimé en millisecondes) de plusieurs méthodes classiques, puis dans le 
second tableau l’allocation mémoire utilisée après le chargement de la page et après avoir ajouté 
1 000 lignes (fi gure I-4).

Plus la cellule du tableau tend vers le foncé, pire est le traitement, et inversement lorsqu’elle tend 
vers le clair.

Nous constatons que le VanillaJS (nom moderne pour parler de JavaScript natif) est forcément 
en première position et que Vue est en deuxième position !

Figure I-4 – Benchmark de rapidité d’exécution et d’allocation mémoire des frameworks JS
(Source : https://www.stefankrause.net)
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Rappels de modélisation en génie logiciel

Architecture MVC
En génie logiciel, le modèle-vue-contrôleur (Model-view-controller) est une architecture destinée 
à découper une application en couches (figure I-5), surtout pour les interfaces web.

Figure I-5 – Schéma du modèle MVC

Architecture MVVM
En génie logiciel, le modèle-vue-vue modèle (Model-view-viewmodel) est une architecture et 
une méthode de conception qui est originaire de Microsoft, notamment pour WPF et Silverlight. 
Très similaire au modèle MVC avec une accentuation des principes de binding (liaison) et events 
(événements). C’est sur cette modélisation que s’appuie le framework Vue.js.

Figure I-6 – Schéma du modèle MVVM
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Front-end et back-end
Ici, nous parlons d’organisation, de rôle, de métier…

Le back-end est la partie « immergée de l’iceberg », invisible pour les utilisateurs. Il est le cœur 
de l’application où l’on retrouve les données et le cœur métier.

Le front-end, quant à lui, est la « pointe de l’iceberg », visible par les utilisateurs. Il représente 
l’interface : les formulaires et le design de l’application.

Figure I-7 – Schéma de communication front-end et back-end
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Une version par environnement
Il est possible d’utiliser Vue de différentes manières, mais gardons en tête qu’il existe deux pac-
kages très distincts :

•	 la version de développement : débogage facilité et interaction avec divers outils (voir chapitre 2 
sur les outils, page 13) ;

•	 la version de production : compressée au maximum (minifi ée), ce qui aura pour désavantage 
de ne pas disposer de la richesse des messages d’informations du framework.

Important

Vue ne supporte pas les versions d’Internet Explorer (IE) 8 et inférieures car il utilise des fonctionnalités 
d’ECMAScript 5.

Figure 1-1 – Compatibilité des navigateurs pour ES5
(Source : https://caniuse.com/#feat=es5)
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Sources du framework

Autonome – Source officielle
La version Autonome signifie que nous avons en notre possession les sources de Vue. Il suffit de 
télécharger le fichier désiré et de l’inclure avec un tag script dans son fichier HTML. Ensuite, 
Vue doit être enregistré comme une variable globale (voir chapitre 3 : Instance de Vue) :

•	 développement : https://fr.vuejs.org/js/vue.js

•	 production : https://fr.vuejs.org/js/vue.min.js

CDN – Serveur de distribution
Un CDN (Content Delivery Network) stocke sur ses serveurs les sources du framework et nous les 
propose via un lien directement exploitable dans nos sources. Le site officiel de Vue.js préconise 
d’utiliser le CDN de unpkg qui fournit la dernière version stable possible afin de refléter le package 
fournit par NPM. Mais il est possible de s’appuyer sur d’autres CDN tels que jsdelivr et cdnjs.

•	 https://unpkg.com/vue@2.5.17/dist/vue.min.js

•	 https://cdn.jsdelivr.net/vue/2.3.2/vue.min.js

•	 https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.min.js

Note

Par défaut, la version proposée est la version minifiée, mais il est possible de supprimer la mention .min 
dans l’URL afin d’obtenir la version de développement.

Nuxt – Le framework universel
Nuxt est un projet dédié à Vue.js qui embarque en son sein les packages de Vue, Webpack et 
Babel (transpiler qui convertit le code ES en JS). Sont intégrés dans le package vue-router, 
Vuex et vue-meta. Il suffit de se rendre sur le site https://fr.nuxtjs.org/ pour en savoir plus.

Vue CLI – Le générateur de projet officiel
Vue.js offre une CLI (Command Line Interface) officielle qui est une interface en ligne de 
commande pour générer un projet configuré avec les dépendances préconisées. Dans le terminal, 
il convient de saisir la commande pour l’installation de la CLI :
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Installation de la CLI

npm install -g @vue/cli

Puis de créer un projet :

Création du projet

vue create nom-de-mon-project

Il faut ensuite se rendre sur la page https://cli.vuejs.org/ pour lire la documentation officielle détaillée.

CodeSandbox – Une solution clé en main
Le site CodeSandbox (https://codesandbox.io/s/vue) fournit un environnement complet et per-
sonnalisable pour développer rapidement et sans aucune installation requise (intégration de VS 
Code). Il peut être, et c’est d’ailleurs recommandé, couplé avec un compte Git.

CodeSandbox est aussi capable d’injecter des dépendances tierces. C’est un véritable IDE 
(Integrated Development Environment ou Environnement de développement) complet en ligne 
qui, par ailleurs, propose VS Code en guise d’outil d’écriture de code.

Bower – Un gestionnaire de dépendances
Bower est un outil, un gestionnaire de dépendances, à installer sur sa machine. C’est une solution 
que nous ne développerons pas ici mais qui mérite d’être mentionnée. Pour ceux qui l’utilisent, 
saisissez la ligne suivante dans l’invite de commande :

bower install vue

NPM (ou Yarn) – Le gestionnaire de référence
NPM est l’outil indispensable à avoir sur sa machine. Il est installé avec Node.js et est disponible 
à l’adresse suivante : https://www.npmjs.com/get-npm.

Utilisé avec le terminal, il permet de gérer les dépendances et s’intègre très facilement avec un 
empaqueteur de modules (module bundler) tel que Webpack, Parcel, Rollup…

Après l’avoir installé, il convient de saisir la ligne suivante dans l’invite de commande :

npm install vue
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Empaqueteurs de modules

Voici les configurations pour les empaqueteurs les plus populaires et un benchmark comparatif.

Webpack

Disponible sur la page https://webpack.js.org/, Webpack est l’empaqueteur le plus populaire. 
Il demande néanmoins un temps assez important de compréhension et surtout de configuration 
avant de pouvoir monter un projet. Voici sa configuration pour Vue :

module.exports = {
  // ...
  resolve: {
    alias: {
      'vue$': 'vue/dist/vue.esm.js'
    }
  }
}

Rollup.js

Rollup est assez proche de Webpack en termes de configuration. Cependant, c’est celui qui met 
le moins de temps à compiler les sources, que ce soit pour le mode Développement comme pour 
le mode Production. Il est disponible à l’adresse https://rollupjs.org/guide/en et sa configuration 
(fichier package.json) pour Vue est la suivante :

const alias = require('rollup-plugin-alias')

rollup({
  // ...
  plugins: [
    alias({
      'vue': 'vue/dist/vue.esm.js'
    })
  ]
})

Parcel.js

Parcel est le plus léger des empaqueteurs, tant en poids qu’en configuration. Il a pour vocation 
de ne nécessiter aucune configuration, tout est intégré. Il est sûrement à privilégier pour de 
petits projets et des POC (proof of concept). Pour plus d’information sur Parcel, consulter le 
site https://parceljs.org/. Pour ajouter la prise en charge des fichiers .vue, il suffit d’ajouter le code 
suivant dans le fichier package.json :
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{
  // ...
  "alias": {
    "vue": "./node_modules/vue/dist/vue.common.js"
  }
}

Benchmark

Pour un même projet, relancé trois fois, voici les temps d’exécution en secondes pour chacun des 
empaqueteurs :

Tableau 1-1. Benchmark d’exécutions des empaqueteurs

Empaqueteur 1er lancement 2e lancement 3e lancement Moyenne
Webpack 3,828 3,456 3,902 3,728

Rollup.js 0,650 0,498 0,495 0,547

Parcel.js 15,05 5,674 4,876 8,533

Notons que ce test est soit pour le mode Développement, soit pour le mode Débogage. Pour le 
mode Production, les temps sont sensiblement les mêmes sauf pour Parcel.js qui est complètement 
hors-jeu avec un temps de premier lancement multiplié par dix.
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