
Brice Chaponneau

Vue.js
Applications web complexes et réactives

34 E

Studio Eyrolles © Éditions Eyrolles C
od

e
éd

ite
ur

 :
G

67
78

3
IS

B
N

 :
97

8-
2-

21
2-

67
78

3-
6

Un ouvrage de référence pour le développeur web
Vue.js est un framework JavaScript orienté front-end qui mérite considération à plusieurs égards. Il est réactif, performant, versatile, facilement
testable, maintenable et sa courbe d’apprentissage est réellement rapide.
L’écriture globale est idéalement structurée et son écosystème aide à créer, organiser et maintenir vos applications clientes.
Ce framework peut se suffire à lui-même pour développer des applications complexes en ayant recours à de simples composants, des mixins
ou des plug-ins. De plus, il s’accompagne d’un univers où de multiples outils sont disponibles pour aider au développement : des extensions,
des plug-ins et des librairies complètes pour vous faire gagner en temps de réalisation, en qualité de code et également en performance.

Compléments web
Tous les exemples des programmes du livre sont en téléchargement sur notre site Internet : www.editions-eyrolles.com/dl/0067783.

À qui s’adresse cet ouvrage ?
• �Aux développeurs et chefs de projet web qui souhaitent réaliser des applications web performantes.
• �À toutes les personnes qui souhaitent découvrir Vue.js et acquérir des connaissances certaines afin d’être autonomes

dans le développement web autour de ce framework.

Brice Chaponneau est titulaire d’un Master IT dans le développement
des applications réparties. Il a travaillé dans différents domaines dont la banque
(Caisse d’Épargne, Société Générale, Edmond de Rothschild, Natixis), l’assurance
(Monceau Assurance), les transports (SNCF) et le secteur industriel (ArcelorMittal).
Brice a donc été développeur, lead technique, chef de projet MOE, Scrum Master
et consultant. Il a majoritairement développé en JavaScript, .Net et via des frameworks
divers. Il maîtrise les bases de données NoSQL comme Mongo DB et SGBDR
(SQL Server, Oracle, Sybase).

Au sommaire
Installer et utiliser Vue.js • Les outils préconisés et leur configuration • Les paradigmes fondamentaux de Vue.js • Les directives pour commander
les éléments • Les directives personnalisées • Formater avec l’interpolation des filtres • Les composants • Les slots, un emplacement ré-
servé pour injecter du contenu • Le composant keep-alive pour garder l’état courant • Apporter de la dynamique visuelle avec les transitions
• La réutilisabilité avec les mixins • Ajouter des fonctionnalités avec les plug-ins • Extension de composant • Le store, gestionnaire d’états
• API • Le routage pour la navigation

B.
 C

ha
po

nn
ea

u
Vu

e.j
s-

Ap
pli

ca
tio

ns
 w

eb
 co

mp
lex

es
 et

 ré
ac

tiv
es

Le framework JavaScript concurrent de React et Angular

67783_Vuejs.indd 1 12/06/2019 17:02

Brice Chaponneau

Vue.js
Applications web complexes et réactives

Un ouvrage de référence pour le développeur web
Vue.js est un framework JavaScript orienté front-end qui mérite considération à plusieurs égards. Il est réactif, performant, versatile, facilement
testable, maintenable et sa courbe d’apprentissage est réellement rapide.
L’écriture globale est idéalement structurée et son écosystème aide à créer, organiser et maintenir vos applications clientes.
Ce framework peut se suffire à lui-même pour développer des applications complexes en ayant recours à de simples composants, des mixins
ou des plug-ins. De plus, il s’accompagne d’un univers où de multiples outils sont disponibles pour aider au développement : des extensions,
des plug-ins et des librairies complètes pour vous faire gagner en temps de réalisation, en qualité de code et également en performance.

Compléments web
Tous les exemples des programmes du livre sont en téléchargement sur notre site Internet : www.editions-eyrolles.com/dl/0067783.

À qui s’adresse cet ouvrage ?
• �Aux développeurs et chefs de projet web qui souhaitent réaliser des applications web performantes.
• �À toutes les personnes qui souhaitent découvrir Vue.js et acquérir des connaissances certaines afin d’être autonomes

dans le développement web autour de ce framework.

Brice Chaponneau est titulaire d’un Master IT dans le développement
des applications réparties. Il a travaillé dans différents domaines dont la banque
(Caisse d’Épargne, Société Générale, Edmond de Rothschild, Natixis), l’assurance
(Monceau Assurance), les transports (SNCF) et le secteur industriel (ArcelorMittal).
Brice a donc été développeur, lead technique, chef de projet MOE, Scrum Master
et consultant. Il a majoritairement développé en JavaScript, .Net et via des frameworks
divers. Il maîtrise les bases de données NoSQL comme Mongo DB et SGBDR
(SQL Server, Oracle, Sybase).

Au sommaire
Installer et utiliser Vue.js • Les outils préconisés et leur configuration • Les paradigmes fondamentaux de Vue.js • Les directives pour commander
les éléments • Les directives personnalisées • Formater avec l’interpolation des filtres • Les composants • Les slots, un emplacement ré-
servé pour injecter du contenu • Le composant keep-alive pour garder l’état courant • Apporter de la dynamique visuelle avec les transitions
• La réutilisabilité avec les mixins • Ajouter des fonctionnalités avec les plug-ins • Extension de composant • Le store, gestionnaire d’états
• API • Le routage pour la navigation

B.
 C

ha
po

nn
ea

u
Vu

e.j
s-

Ap
pli

ca
tio

ns
 w

eb
 co

mp
lex

es
 et

 ré
ac

tiv
es

Le framework JavaScript concurrent de React et Angular

67783_Vuejs.indd 1 12/06/2019 17:02

http://www.editions-eyrolles.com

Vue.js

DANS LA MÊME COLLECTION

S. Ringuedé. – SAS.
N° 67631, 2019, 688 pages.

M. Bidault. – Programmation Excel avec VBA.
N° 67786, 2019, 512 pages.

R. Goetter. – CSS 3 Grid Layout.
N° 67683, 2019, 131 pages.

C. Blaess. – Solutions temps réel sous Linux.
N° 67711, 3e édition, 2019, 318 pages.

C. Pierre De Geyer, J. Pauli, P. Martin, E. Daspet. – PHP 7 avancé.
N° 67720, 2e édition, 2018, 736 pages.

H. Wickham, G. Grolemund. – R pour les data sciences.
N° 67571, 2018, 496 pages.

F. Provost, T. Fawcett. – Data science pour l’entreprise.
N° 67570, 2018, 370 pages.

J. Chokogoue. – Maîtrisez l’utilisation des technologies Hadoop.
N° 67478, 2018, 432 pages.

H. Ben Rebah, B. Mariat. – API HTML 5 : maîtrisez le Web moderne !
N° 67554, 2018, 294 pages.

W. McKinney. – Analyse de données en Python.
N° 14109, 2015, 488 pages.

E. Biernat, M. Lutz. – Data science : fondamentaux et études de cas.
N° 14243, 2015, 312 pages.

SUR LE MÊME THÈME

É. Sarrion. – React.js.
N° 67756, 2019, 350 pages.

T. Parisot. – Node.js.
N° 13993, 2018, 472 pages.

C. Herby. – Apprenez à programmer en Java.
N° 67521, 2018, 788 pages.

Retrouvez nos bundles (livres papier + e-book) et livres numériques sur

http://izibook.eyrolles.com

Vue.js
Applications web complexes et réactives

Brice Chaponneau

En application de la loi du 11 mars 1957, il est interdit de reproduire intégralement ou partiellement le
présent ouvrage, sur quelque support que ce soit, sans l’autorisation de l’Éditeur ou du Centre Français
d’exploitation du droit de copie, 20, rue des Grands Augustins, 75006 Paris.

© Éditions Eyrolles, 2019, ISBN : 978-2-212-67783-6

ÉDITIONS EYROLLES
61, bd Saint-Germain
75240 Paris Cedex 05

www.editions-eyrolles.com

Avant-propos

Comment lire cet ouvrage ?
L’ouvrage est construit de manière incrémentale sur la compréhension et l’utilisation de Vue.js :
de l’installation du cœur et des packages principaux de ce framework à la création d’un projet
complet, en passant par l’ensemble de ses composantes, la préconisation d’outils et leur configu-
ration mais également des astuces d’écriture de code ou d’optimisation d’exécution.

Que contient ce livre ?
Pour appuyer les chapitres décrivant une composante majeure de Vue, des exercices seront
proposés afin de bien en comprendre les rouages. Ils mèneront à un projet final. Il est donc
conseillé de lire ce livre chapitre après chapitre.

Le premier chapitre est la mise en lumière de Vue. Le deuxième chapitre expose la multitude de
possibilités offertes pour installer et/ou utiliser Vue et propose un panel d’outils, ainsi que leur
configuration. Les chapitres suivants décortiquent les paradigmes du framework.

À qui s’adresse-t-il ?
Vue est écrit en JavaScript (JS) et ce livre n’a pas vocation à reprendre les bases de ce langage, ni
les conventions ECMAScript − même si nous y trouverons quelques rappels et comparaisons −
mais à disséquer ce framework. Il est donc nécessaire que le lecteur connaisse les bases de JS,
du langage HTML et des styles CSS. Notons cependant que les exemples vont à l’essentiel afin
d’exposer un sujet précis et ne veulent en aucun cas perdre le lecteur dans des propositions
surchargées.

VI
Vue.js	

Code source en téléchargement
Tous les codes sources sont également disponibles sur l’espace de téléchargement dédié sur le
site des éditions Eyrolles (editions-eyrolles.com/dl/0067783) afin de permettre au lecteur de se
focaliser sur la compréhension et les tests plutôt que sur la réécriture.

Un fichier nommé Readme.html à la racine de ce dossier de téléchargement apporte une explica-
tion simple et détaillée pour pouvoir lancer les serveurs et apprécier le code ainsi que le rendu.

Table des matières

Introduction . 	 1

Historique de Vue.js . 	 1

Comparatif des frameworks JavaScript actuels . 	 1

Rappels de modélisation en génie logiciel . 	 5
Architecture MVC . 	 5
Architecture MVVM . 	 5
Front-end et back-end . 	 6

chapitre 1

Installer et utiliser Vue.js . 	 7

Une version par environnement . 	 7

Sources du framework . 	 8
Autonome – Source officielle . 	 8
CDN – Serveur de distribution . 	 8
Nuxt – Le framework universel . 	 8
Vue CLI – Le générateur de projet officiel . 	 8
CodeSandbox – Une solution clé en main . 	 9
Bower – Un gestionnaire de dépendances . 	 9
NPM (ou Yarn) – Le gestionnaire de référence . 	 9

chapitre 2

Les outils préconisés et leur configuration . 	 13

VS Code Debugger for Chrome . 	 13
Description . 	 13
Configuration . 	 13
Déboguer pas à pas . 	 15

VIII
Vue.js

Vue.js devtools . 	 16
Description . 	 16
Installation . 	 17

Vue Performance Devtool . 	 17
Description . 	 17

Vetur . 	 18
Description . 	 18

chapitre 3

Les paradigmes fondamentaux de Vue.js . 	 19

Instance de Vue.js . 	 19
Au cœur du système réactif . 	 19
Organisation et optimisation de la structure de page HTML 	 21

Cycle de vie d’une instance de Vue.js . 	 22
Hooks du cycle de vie .	 23
Le contexte ou la portée . 	 23

Hello World – Première instance . 	 24

Qu’est-ce qu’un composant et comment l’intégrer ? . 	 25
Structure d’un composant . 	 25
Intégration d’un composant dans l’environnement applicatif 	 25

Les propriétés d’instance . 	 26
Référencer les éléments avec $refs . 	 26

Interpolation pour générer du rendu . 	 29
Texte ou mustache . 	 30
Utilisation des premières directives . 	 31

chapitre 4

Les directives pour commander les éléments . 	 35

Associer les directives et les arguments . 	 36

Des modificateurs pour enrichir les directives . 	 37

Les directives natives en détail . 	 37
Les directives d’interpolation . 	 37
Les directives de rendu conditionnel . 	 39

IX
Table des matières

Les directives de rendu de liste . 	 41
Les directives de gestion d’événements . 	 48
Les directives de liaison . 	 53

chapitre 5

Les directives personnalisées . 	 65

Enregistrement et utilisation . 	 65

Exemple : directive de déplacement . 	 67

chapitre 6

Formater avec l’interpolation des filtres . 	 71

Qu’est-ce qu’un filtre ? . 	 71

Écriture de filtres . 	 71

chapitre 7

Les composants . 	 75

Définition . 	 75

Premier composant . 	 76

Les options structurantes . 	 78
Data : les variables réactives . 	 78
Props : les propriétés de communication . 	 79
Methods : les fonctions de traitement . 	 83
Computed : le calcul avec mise en cache . 	 85
Différences entre les options methods et computed . 	 87
Watch : personnaliser l’observation des changements . 	 87
V-model personnalisé . 	 90

Création locale . 	 93

Création globale . 	 94

Création mono-fichier . 	 94
Écriture alternative . 	 96
Optimisation avec l’architecture modulaire . 	 97
Optimisation avec le lazy loading . 	 99
Préconisation pour écrire rapidement un composant . 	 100

X
Vue.js

Communiquer avec les composants . 	 101
Communication parent vers enfant . 	 103
Communication enfant vers parent . 	 103
Communication entre composants . 	 105
Communication avec un composant récursif . 	 107
Gestion de composants dynamiques . 	 111
Supprimer l’héritage d’attribut . 	 114

chapitre 8

Les slots, un emplacement réservé pour injecter du contenu 	 117

Définition . 	 117

Utilisation standard d’un slot . 	 118

Utilisation de slots nommés . 	 121

Slot avec portée . 	 123

Slot avec passage de propriété . 	 124

Des slots dynamiques . 	 125

Comment et pourquoi tester l’existence d’un slot ? . 	 126

chapitre 9

Le composant keep-alive pour garder l’état courant . 	 131

Utilisation du système de cache . 	 131

chapitre 10

Apporter de la dynamique visuelle avec les transitions . 	 135

Qu’est-ce que le composant transition ? . 	 135

Mémento des classes et des événements pour les transitions 	 137

Exemple de transition . 	 137

Des transitions réutilisables et génériques . 	 140

XI
Table des matières

chapitre 11

La réutilisabilité avec les mixins . 	 147

Qu’est-ce qu’un mixin ? . 	 147
Attentions à porter lors de l’utilisation des mixins . 	 148

chapitre 12

Ajouter des fonctionnalités avec les plug-ins . 	 153

Comment créer un plug-in ? . 	 154

Plug-in d’intégration . 	 155
Installation automatique . 	 155

Comment utiliser un plug-in ? . 	 156

chapitre 13

Extension de composant . 	 159

La méthode . 	 159

L’injection de dépendances . 	 163
Principe . 	 163

chapitre 14

Le store, gestionnaire d’états . 	 167

Définition . 	 167

Le gestionnaire Vuex . 	 170
Qu’est-ce que Vuex ? . 	 170
Vue devtools comme compagnon . 	 171
Comment installer Vuex ? . 	 171
Création de la structure de base . 	 172
Créer un store avec Vuex . 	 173

XII
Vue.js

chapitre 15

API	 . 201

Principe de base de communication avec une API . 	 201

Comment communiquer avec une API ? . 	 201
Bibliothèque Fetch . 	 201
Bibliothèque Axios . 	 203
Consommation d’une API . 	 206

chapitre 16

Le routage pour la navigation . 	 217

Pourquoi utiliser un plug-in de routage ? . 	 217

Comment installer le router ? . 	 218

Comment définir une route ? . 	 218
Préconisation pour la gestion du routage . 	 219
Un composant pour page . 	 222
La concordance dynamique, mettre des variables dans nos routes 	 225
La vue, naviguer sur une page avec de multiples composants 	 229
Naviguer par le code, sans action de l’utilisateur . 	 231
Intercepter une route de navigation . 	 232
De la métadonnée dans les routes . 	 234
De l’animation dans la navigation . 	 234

Conclusion . 	 239

Index	 . 	 241

Introduction

Vue (prononcé « view ») est un framework évolutif JavaScript front-end et open source qui permet
de construire des interfaces web utilisant des liaisons de données MVVM (Modèle-Vue-Vue-
Modèle) très simplement, le tout architecturé autour du composant et surtout de la réutilisabilité.

Il est possible de réaliser des composants unitaires, des applications SPA (Single Page
Application), SSR (Server Side Rendering), Mobile… De plus, un projet Vue peut être couplé
avec d’autres outils ou bibliothèques tierces.

Vue est disponible sur le site officiel du framework à l’adresse suivante : https://vuejs.org/.

Historique de Vue.js
Après avoir travaillé chez Google sur divers projets avec leur framework AngularJS, Evan You
a implémenté un framework plus léger, organisé et plus modulable. La première version de Vue
a été déposée sur GitHub en février 2014 et son code couvert par des tests unitaires sous Karma
(bibliothèque JavaScript de tests unitaires).

Aujourd’hui, ce projet est maintenu par divers auteurs à l’international tant pour le noyau que
pour les outils et modules complémentaires.

Comparatif des frameworks JavaScript actuels
À ce jour, il existe une multitude de bibliothèques JavaScript telles que JQuery, Angular, Ember
et React pour ne citer que les plus populaires. Voici quelques comparatifs que nous pouvons
apprécier concernant l’évolution de l’utilisation et de la cote de popularité de Vue.js et ce, malgré
sa jeunesse somme toute relative.

La figure I-1 présente les statistiques NPM (graphique) et GitHub (tableau) des frameworks JS sur
2 ans, avec comme métriques la popularité et la tendance d’utilisation avec les curseurs suivants :

•	 stars : popularité des utilisateurs ;

•	 forks : nombre de copies des référentiels faites par les utilisateurs ;

•	 issues : nombre d’anomalies remontées par les utilisateurs.

2
Vue.js

On observe donc qu’à ce jour, React.js est en première position et Vue.js en deuxième position.
Il faut garder en mémoire que React a eu la promotion de Facebook et que ce framework est né
1 an avant Vue. Evan You a su promouvoir son projet, le rendre fi able et populaire.

Figure I-1 – Comparatif des frameworks JS
(Source : https://www.npmtrends.com)

Cet autre site donne d’abord les statistiques de popularité (onglet Popular) et dans un second
temps la tendance d’utilisation (onglet Trending) des frameworks actuels (fi gures I-2 et I-3).

3
Introduction

Figure I-2 – Popularité des frameworks JS sur 1 an
(Source : https://bestof.js.org)

Figure I-3 – Tendance de l’utilisation des frameworks JS sur 1 an
(Source : https://bestof.js.org)

Pour fi nir, observons un benchmark lancé sur un MacBook Pro 15 (2,5 GHz i7, 16 Go RAM,
OS X 10.12.5, Chrome 58.0.3029.110, 64-bit) dans lequel nous avons pour le premier tableau le

4
Vue.js

temps d’exécution (exprimé en millisecondes) de plusieurs méthodes classiques, puis dans le
second tableau l’allocation mémoire utilisée après le chargement de la page et après avoir ajouté
1 000 lignes (fi gure I-4).

Plus la cellule du tableau tend vers le foncé, pire est le traitement, et inversement lorsqu’elle tend
vers le clair.

Nous constatons que le VanillaJS (nom moderne pour parler de JavaScript natif) est forcément
en première position et que Vue est en deuxième position !

Figure I-4 – Benchmark de rapidité d’exécution et d’allocation mémoire des frameworks JS
(Source : https://www.stefankrause.net)

5
Introduction

Rappels de modélisation en génie logiciel

Architecture MVC
En génie logiciel, le modèle-vue-contrôleur (Model-view-controller) est une architecture destinée
à découper une application en couches (figure I-5), surtout pour les interfaces web.

Figure I-5 – Schéma du modèle MVC

Architecture MVVM
En génie logiciel, le modèle-vue-vue modèle (Model-view-viewmodel) est une architecture et
une méthode de conception qui est originaire de Microsoft, notamment pour WPF et Silverlight.
Très similaire au modèle MVC avec une accentuation des principes de binding (liaison) et events
(événements). C’est sur cette modélisation que s’appuie le framework Vue.js.

Figure I-6 – Schéma du modèle MVVM

6
Vue.js

Front-end et back-end
Ici, nous parlons d’organisation, de rôle, de métier…

Le back-end est la partie « immergée de l’iceberg », invisible pour les utilisateurs. Il est le cœur
de l’application où l’on retrouve les données et le cœur métier.

Le front-end, quant à lui, est la « pointe de l’iceberg », visible par les utilisateurs. Il représente
l’interface : les formulaires et le design de l’application.

Figure I-7 – Schéma de communication front-end et back-end

1
Installer et utiliser Vue.js

Une version par environnement
Il est possible d’utiliser Vue de différentes manières, mais gardons en tête qu’il existe deux pac-
kages très distincts :

•	 la version de développement : débogage facilité et interaction avec divers outils (voir chapitre 2
sur les outils, page 13) ;

•	 la version de production : compressée au maximum (minifi ée), ce qui aura pour désavantage
de ne pas disposer de la richesse des messages d’informations du framework.

Important

Vue ne supporte pas les versions d’Internet Explorer (IE) 8 et inférieures car il utilise des fonctionnalités
d’ECMAScript 5.

Figure 1-1 – Compatibilité des navigateurs pour ES5
(Source : https://caniuse.com/#feat=es5)

8
Vue.js	

Sources du framework

Autonome – Source officielle
La version Autonome signifie que nous avons en notre possession les sources de Vue. Il suffit de
télécharger le fichier désiré et de l’inclure avec un tag script dans son fichier HTML. Ensuite,
Vue doit être enregistré comme une variable globale (voir chapitre 3 : Instance de Vue) :

•	 développement : https://fr.vuejs.org/js/vue.js

•	 production : https://fr.vuejs.org/js/vue.min.js

CDN – Serveur de distribution
Un CDN (Content Delivery Network) stocke sur ses serveurs les sources du framework et nous les
propose via un lien directement exploitable dans nos sources. Le site officiel de Vue.js préconise
d’utiliser le CDN de unpkg qui fournit la dernière version stable possible afin de refléter le package
fournit par NPM. Mais il est possible de s’appuyer sur d’autres CDN tels que jsdelivr et cdnjs.

•	 https://unpkg.com/vue@2.5.17/dist/vue.min.js

•	 https://cdn.jsdelivr.net/vue/2.3.2/vue.min.js

•	 https://cdnjs.cloudflare.com/ajax/libs/vue/2.3.4/vue.min.js

Note

Par défaut, la version proposée est la version minifiée, mais il est possible de supprimer la mention .min
dans l’URL afin d’obtenir la version de développement.

Nuxt – Le framework universel
Nuxt est un projet dédié à Vue.js qui embarque en son sein les packages de Vue, Webpack et
Babel (transpiler qui convertit le code ES en JS). Sont intégrés dans le package vue-router,
Vuex et vue-meta. Il suffit de se rendre sur le site https://fr.nuxtjs.org/ pour en savoir plus.

Vue CLI – Le générateur de projet officiel
Vue.js offre une CLI (Command Line Interface) officielle qui est une interface en ligne de
commande pour générer un projet configuré avec les dépendances préconisées. Dans le terminal,
il convient de saisir la commande pour l’installation de la CLI :

9
Installer et utiliser Vue.js

Chapitre 1

Installation de la CLI

npm install -g @vue/cli

Puis de créer un projet :

Création du projet

vue create nom-de-mon-project

Il faut ensuite se rendre sur la page https://cli.vuejs.org/ pour lire la documentation officielle détaillée.

CodeSandbox – Une solution clé en main
Le site CodeSandbox (https://codesandbox.io/s/vue) fournit un environnement complet et per-
sonnalisable pour développer rapidement et sans aucune installation requise (intégration de VS
Code). Il peut être, et c’est d’ailleurs recommandé, couplé avec un compte Git.

CodeSandbox est aussi capable d’injecter des dépendances tierces. C’est un véritable IDE
(Integrated Development Environment ou Environnement de développement) complet en ligne
qui, par ailleurs, propose VS Code en guise d’outil d’écriture de code.

Bower – Un gestionnaire de dépendances
Bower est un outil, un gestionnaire de dépendances, à installer sur sa machine. C’est une solution
que nous ne développerons pas ici mais qui mérite d’être mentionnée. Pour ceux qui l’utilisent,
saisissez la ligne suivante dans l’invite de commande :

bower install vue

NPM (ou Yarn) – Le gestionnaire de référence
NPM est l’outil indispensable à avoir sur sa machine. Il est installé avec Node.js et est disponible
à l’adresse suivante : https://www.npmjs.com/get-npm.

Utilisé avec le terminal, il permet de gérer les dépendances et s’intègre très facilement avec un
empaqueteur de modules (module bundler) tel que Webpack, Parcel, Rollup…

Après l’avoir installé, il convient de saisir la ligne suivante dans l’invite de commande :

npm install vue

10
Vue.js	

Empaqueteurs de modules

Voici les configurations pour les empaqueteurs les plus populaires et un benchmark comparatif.

Webpack

Disponible sur la page https://webpack.js.org/, Webpack est l’empaqueteur le plus populaire.
Il demande néanmoins un temps assez important de compréhension et surtout de configuration
avant de pouvoir monter un projet. Voici sa configuration pour Vue :

module.exports = {
 // ...
 resolve: {
 alias: {
 'vue$': 'vue/dist/vue.esm.js'
 }
 }
}

Rollup.js

Rollup est assez proche de Webpack en termes de configuration. Cependant, c’est celui qui met
le moins de temps à compiler les sources, que ce soit pour le mode Développement comme pour
le mode Production. Il est disponible à l’adresse https://rollupjs.org/guide/en et sa configuration
(fichier package.json) pour Vue est la suivante :

const alias = require('rollup-plugin-alias')

rollup({
 // ...
 plugins: [
 alias({
 'vue': 'vue/dist/vue.esm.js'
 })
]
})

Parcel.js

Parcel est le plus léger des empaqueteurs, tant en poids qu’en configuration. Il a pour vocation
de ne nécessiter aucune configuration, tout est intégré. Il est sûrement à privilégier pour de
petits projets et des POC (proof of concept). Pour plus d’information sur Parcel, consulter le
site https://parceljs.org/. Pour ajouter la prise en charge des fichiers .vue, il suffit d’ajouter le code
suivant dans le fichier package.json :

11
Installer et utiliser Vue.js

Chapitre 1

{
 // ...
 "alias": {
 "vue": "./node_modules/vue/dist/vue.common.js"
 }
}

Benchmark

Pour un même projet, relancé trois fois, voici les temps d’exécution en secondes pour chacun des
empaqueteurs :

Tableau 1-1. Benchmark d’exécutions des empaqueteurs

Empaqueteur 1er lancement 2e lancement 3e lancement Moyenne
Webpack 3,828 3,456 3,902 3,728

Rollup.js 0,650 0,498 0,495 0,547

Parcel.js 15,05 5,674 4,876 8,533

Notons que ce test est soit pour le mode Développement, soit pour le mode Débogage. Pour le
mode Production, les temps sont sensiblement les mêmes sauf pour Parcel.js qui est complètement
hors-jeu avec un temps de premier lancement multiplié par dix.

	Vue.js
	Avant-propos
	Table des matières
	Introduction
	Historique de Vue.js
	Comparatif des frameworks JavaScript actuels
	Rappels de modélisation en génie logiciel
	Architecture MVC
	Architecture MVVM
	Front-end et back-end

	Chapitre 1. Installer et utiliser Vue.js
	Une version par environnement
	Sources du framework
	Autonome – Source officielle
	CDN – Serveur de distribution
	Nuxt – Le framework universel
	Vue CLI – Le générateur de projet officiel
	CodeSandbox – Une solution clé en main
	Bower – Un gestionnaire de dépendances
	NPM (ou Yarn) – Le gestionnaire de référence

	Chapitre 2. Les outils préconisés et leur configuration
	VS Code Debugger for Chrome
	Description
	Configuration
	Déboguer pas à pas

	Vue.js devtools
	Description
	Installation

	Vue Performance Devtool
	Description

	Vetur
	Description

	Chapitre 3. Les paradigmes fondamentaux de Vue.js
	Instance de Vue.js
	Au cœur du système réactif
	Organisation et optimisation de la structure de page HTML

	Cycle de vie d’une instance de Vue.js
	Hooks du cycle de vie
	Le contexte ou la portée

	Hello World – Première instance
	Qu’est-ce qu’un composant et comment l’intégrer ?
	Structure d’un composant
	Intégration d’un composant dans l’environnement applicatif

	Les propriétés d’instance
	Référencer les éléments avec $refs

	Interpolation pour générer du rendu
	Texte ou mustache
	Utilisation des premières directives

	Chapitre 4. Les directives pour commander les éléments
	Associer les directives et les arguments
	Des modificateurs pour enrichir les directives
	Les directives natives en détail
	Les directives d’interpolation
	Les directives de rendu conditionnel
	Les directives de rendu de liste
	Les directives de gestion d’événements
	Les directives de liaison

	Chapitre 5. Les directives personnalisées
	Enregistrement et utilisation
	Exemple : directive de déplacement

	Chapitre 6. Formater avec l’interpolation des filtres
	Qu’est-ce qu’un filtre ?
	Écriture de filtres

	Chapitre 7. Les composants
	Définition
	Premier composant
	Les options structurantes
	Data : les variables réactives
	Props : les propriétés de communication
	Methods : les fonctions de traitement
	Computed : le calcul avec mise en cache
	Différences entre les options methods et computed
	Watch : personnaliser l’observation des changements
	V-model personnalisé

	Création locale
	Création globale
	Création mono-fichier
	Écriture alternative
	Optimisation avec l’architecture modulaire
	Optimisation avec le lazy loading
	Préconisation pour écrire rapidement un composant

	Communiquer avec les composants
	Communication parent vers enfant
	Communication enfant vers parent
	Communication entre composants
	Communication avec un composant récursif
	Gestion de composants dynamiques
	Supprimer l’héritage d’attribut

	Chapitre 8. Les slots, un emplacement réservé pour injecter du contenu
	Définition
	Utilisation standard d’un slot
	Utilisation de slots nommés
	Slot avec portée
	Slot avec passage de propriété
	Des slots dynamiques
	Comment et pourquoi tester l’existence d’un slot ?

	Chapitre 9. Le composant keep-alive pour garder l’état courant
	Utilisation du système de cache

	Chapitre 10. Apporter de la dynamique visuelle avec les transitions
	Qu’est-ce que le composant transition ?
	Mémento des classes et des événements pour les transitions
	Exemple de transition
	Des transitions réutilisables et génériques

	Chapitre 11. La réutilisabilité avec les mixins
	Qu’est-ce qu’un mixin ?
	Attentions à porter lors de l’utilisation des mixins

	Chapitre 12. Ajouter des fonctionnalités avec les plug-ins
	Comment créer un plug-in ?
	Plug-in d’intégration
	Installation automatique

	Comment utiliser un plug-in ?

	Chapitre 13. Extension de composant
	La méthode
	L’injection de dépendances
	Principe

	Chapitre 14. Le store, gestionnaire d’états
	Définition
	Le gestionnaire Vuex
	Qu’est-ce que Vuex ?
	Vue devtools comme compagnon
	Comment installer Vuex ?
	Création de la structure de base
	Créer un store avec Vuex

	Chapitre 15. API
	Principe de base de communication avec une API
	Comment communiquer avec une API ?
	Bibliothèque Fetch
	Bibliothèque Axios
	Consommation d’une API

	Chapitre 16. Le routage pour la navigation
	Pourquoi utiliser un plug-in de routage ?
	Comment installer le router ?
	Comment définir une route ?
	Préconisation pour la gestion du routage
	Un composant pour page
	La concordance dynamique, mettre des variables dans nos routes
	La vue, naviguer sur une page avec de multiples composants
	Naviguer par le code, sans action de l’utilisateur
	Intercepter une route de navigation
	De la métadonnée dans les routes
	De l’animation dans la navigation

	Conclusion
	Index

