FICHA TÉCNICA

Título: Resumo Essencial — Preparação para Exames — Física e Química 10.º e 11.º Anos

Autoras: Maria Teresa Escoval e Rosa Maria Capucho

Copyright © by Maria Teresa Escoval, Rosa Maria Capucho e Editorial Presença, Lisboa, 2008

Revisão: Caligrama — Produção Editorial/Editorial Presença

Capa: Vera Espinha/Editorial Presença

Pré-impressão, impressão e acabamento: Multitipo — Artes Gráficas, Lda.

1.ª edição, Lisboa, fevereiro, 2008 8.ª edição, Lisboa, fevereiro, 2017 Depósito legal n.º 307 352/10

Reservados todos os direitos para a língua portuguesa à EDITORIAL PRESENÇA Estrada das Palmeiras, 59 Queluz de Baixo 2730-132 Barcarena info@presenca.pt www.presenca.pt

Índice

FÍSICA

10.° ano

Energia e sua conservação

Energia e movimentos	9
Energia e fenómenos elétricos	12
Energia, fenómenos térmicos e radiação	17
11.° ano	
Mecânica	
Tempo, posição e velocidade	23
Interações e seus efeitos	27
Forças e movimentos	33
Ondas e eletromagnetismo	
Sinais e ondas	41
Eletromagnetismo	44
Ondas eletromagnéticas	50

QUÍMICA

10.° ano

Elementos químicos e sua organização

Massa e tamanho dos átomos	59
Energia dos eletrões nos átomos	61
Tabela Periódica	66
Propriedades e transformações da matéria	
Ligação química	69
Gases e dispersões	75
Transformações químicas	77
11.° ano	
Equilíbrio químico	
Aspetos quantitativos das reações químicas	80
Equilíbrio químico e extensão das reações químicas	81
Reações em sistemas aquosos	
Reações ácido-base	84
Reações de oxidação-redução	91
Soluções e equilíbrio de solubilidade	94
ANTWOO	
ANEXOS	
Cálculos em aplicações numéricas e em atividades laboratoriais	99
Tabelas de grandezas físicas	101

10.º ano

Energia e sua conservação

Energia e movimentos

- Corpo é uma porção de matéria com extensão limitada que, em movimento de translação, se comporta como sendo uma partícula.
- Partícula é uma entidade hipotética com massa, sem extensão física (volume), ou seja, reduz-se a um ponto e é incapaz de ter movimento de rotação.
- **Sistema** é um corpo, um conjunto de corpos ou um conjunto bem delimitado de partículas, que é objeto de análise e estudo.
- Energia cinética, E_c, de um sistema é a energia associada ao seu movimento.
 Para um corpo de massa m e velocidade de módulo v, o valor da sua energia cinética é dado por:

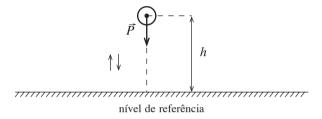
$$E_{\rm c} = \frac{1}{2} m v^2$$

- Energia potencial, gravítica, elétrica e elástica, é a energia associada às interações de um corpo com outros corpos ou entre as partículas de um sistema.
- Energia interna de um sistema de partículas é a soma das energias cinéticas e das energias potenciais de todas as partículas do sistema.
- Sistema mecânico é aquele em que são desprezáveis as variações da sua energia interna relativamente às variações de outras formas de energia.
- Considera-se um corpo reduzido a uma partícula o centro de massa do corpo quando a extensão e a forma do corpo são irrelevantes para a resolução de um problema. Um sistema como este apenas possui movimento de translação.
- Centro de massa de um corpo é o ponto onde se considera estar concentrada a massa desse corpo e onde se supõe estar aplicada a resultante das forças que atuam no corpo.
 O modelo simplificado do centro de massa reduz um corpo extenso a uma partícula.
- Trabalho é a grandeza física que mede a variação da energia de um sistema sobre o qual atuam forças. É uma medida da energia que é transferida entre sistemas por ação de forças. O valor do trabalho, W, realizado por uma força constante que atua num corpo, é dado pelo produto dos módulos da força, F, e do deslocamento, d, do ponto de aplicação da força e do cosseno do ângulo α definido pela direção da força e pela direção do deslocamento:

$$W = F d \cos \alpha$$

Quando $\alpha = 0^{\circ}$, o trabalho da força tem valor máximo positivo.

Quando $0^{\circ} \le \alpha < 90^{\circ}$, o trabalho realizado pela força tem valor positivo: a força contribui para o aumento da energia do corpo.


Quando $\alpha = 90^{\circ}$, o trabalho da força é nulo: a força não altera o valor da energia do corpo. Quando $90^{\circ} < \alpha \le 180^{\circ}$, o trabalho da força tem valor negativo: a força contribui para a diminuição da energia do corpo.

Quando $\alpha = 180^{\circ}$, o trabalho da força tem valor máximo negativo.

• O **trabalho realizado pelo peso**, de módulo *P*, de um corpo de massa *m*, que se desloca verticalmente, em que o seu centro de massa percorre uma distância *h*, é dado por:

$$W(P) = P h \cos \alpha$$
 e $P = m g$

g é o módulo da aceleração gravítica.

Na queda:

$$W(P) = m g h$$
 porque $\alpha = 0^{\circ}$

Na subida:

$$W(P) = -m g h$$
 porque $\alpha = 180^{\circ}$

• **Teorema da Energia Cinética**: o trabalho realizado pela resultante das forças, de módulo $F_{\rm res}$, que atuam num corpo, durante um certo intervalo de tempo, é igual à variação da energia cinética desse corpo, no mesmo intervalo de tempo. É traduzido pela equação:

$$W(F_{\rm res}) = \Delta E_{\rm c}$$
 \Rightarrow $W(F_{\rm res}) = \frac{1}{2} m v_{\rm f}^2 - \frac{1}{2} m v_{\rm i}^2$

m é a massa do corpo, v_f e v_i são os módulos da velocidade, respetivamente, final e inicial do corpo.

 Força conservativa é a que realiza trabalho nulo quando o seu ponto de aplicação descreve uma trajetória fechada. Neste percurso, as posições inicial e final do ponto de aplicação da força são coincidentes.

O **peso** de um corpo é uma força conservativa.

O trabalho realizado por uma força conservativa, num percurso aberto, é independente da trajetória percorrida pelo ponto de aplicação da força, só depende das suas posições inicial e final.

• Força não conservativa é a que realiza trabalho não nulo num percurso fechado descrito pelo seu ponto de aplicação.

A força de atrito é um exemplo de força não conservativa.

• A energia potencial gravítica, E_{pg} , de um corpo de massa m provém da interação desse corpo com a Terra. O seu valor é dado por:

$$E_{pg} = m g h$$